乙烯在钯圆盘电极的电化学氧化研究
Electrochemical Oxidation of Ethylene on Palladium Electrode
Received date: 2022-05-31
Revised date: 2022-06-27
Accepted date: 2022-07-12
Online published: 2022-07-13
由于巨大的潜在市场,乙烯的电化学氧化受到愈来愈多的关注。目前,主流的电化学氧化法仍以依赖于氧化还原媒介的介导氧化法为主,而这些媒介的使用在电解过程中产生大量的腐蚀性中间体,使其实际应用受到阻碍。直接电氧化法可有效规避此问题,但又受到低活性和低选择性的限制。在本工作中,我们针对目前最先进的钯催化直接氧化体系,在中性条件下开展了一系列电化学研究,以对该过程的机理获取更深入的认识。在氮气和乙烯氛围下,钯电极的循环伏安谱图有显著区别。我们发现电解过程中生成的Pd(II)物种在乙烯氛围下可绕过原本的电化学还原路径,通过一个化学步还原为Pd(0),因此可能是乙烯氧化的活性位点。Pd(II)物种所对应的还原峰也因此可作为乙烯吸附的数量的指标。通过电化学脉冲序列的设计,我们在钯催化剂上识别了两种具有不同吸附强度的乙烯,其强、弱吸附模式所对应的电荷转移比例约为0.3:1。弱吸附的乙烯在钯电极表面表现出可逆的吸脱附行为,而具有强吸附模式的乙烯无法通过物理过程脱附,可能指向到乙烯深度氧化过程。这项工作为进一步设计高性能乙烯直接电氧化催化剂提供了设计思路和方向。
吴炜星 , 王莹 . 乙烯在钯圆盘电极的电化学氧化研究[J]. 电化学, 2023 , 29(1) : 2215004 . DOI: 10.13208/j.electrochem.2215004
The electrochemical oxidation of C2H4 is attracting increasing attention due to its vast potential market. The current electrochemical methods rely on the use of redox mediators, which may produce corrosive intermediates, while direct oxidation is still limited by its low activity and selectivity. Herein, we conducted electrochemical studies to obtain mechanistic insights into the benchmark Pd catalyst. The generated Pd(II) could be the active site for C2H4 oxidation. By designing the pulse sequence, we found the ratio of strongly and weakly adsorbed C2H4 on Pd to be 0.3:1. The result we obtained provides a guideline for the rational design of high-performance C2H4 oxidation catalysts.
[1] | Ethylene Market Size, Share & Covid-19 Impact Analysis, by Application (High-density Polyethylene, Low-Density Polyethylene, Ethylene Oxide, Ethyl Benzene, and Others), and Regional Forecast, 2020-2027[R]. Fortune Business Insights, 2020. Report no.: FBI104532. |
[2] | 2022-2027年中国环氧乙烷行业市场全景评估及发展战略规划报告[R]. 华经产业研究院, 2022. Report no.: 791393. |
[3] | 2022-2028年中国乙二醇行业市场深度分析及未来趋势预测报告[R]. 智研咨询, 2022. Report no.: R982367. |
[4] | Pu T, Tian H, Ford M E, Rangarajan S, Wachs I E. Overview of selective oxidation of ethylene to ethylene oxide by Ag catalysts[J]. ACS Catalysis, 2019, 9(12): 10727-10750. |
[5] | Pinaeva L G, Noskov A S. Prospects for the development of ethylene oxide production catalysts and processes (review)[J]. Petrol. Chem., 2020, 60(11): 1191-1206. |
[6] | Boulamanti A, Moya J A. Energy efficiency and GHG emissions: Prospective scenarios for the chemical and petrochemical industry[R]. Luxembourg: Publications Office of the European Union 28471 EN, doi:10.2760/20486. |
[7] | Leow W R, Lum Y, Ozden A, Wang Y H, Nam D H, Chen B, Wicks J, Zhuang T T, Li F W, Sinton D, Sargent E H. Chloride-mediated selective electrosynthesis ofethylene and propylene oxides at highcurrent density[J]. Science, 2020, 368(6496): 1228-1233. |
[8] | Li R, Xiang K, Peng Z K, Zou Y Q, Wang S Y. Recent advances on electrolysis for simultaneous generation of valuable chemicals at both anode and cathode[J]. Adv. Energy. Mater., 2021, 11(46): 2102292. |
[9] | Na J, Seo B, Kim J, Lee C W, Lee H, Hwang Y J, Min B K, Lee D K, Oh H S, Lee U. General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation[J]. Nat. Commun., 2019, 10(1): 5193. |
[10] | Li T F, Cao Y, He J F, Berlinguette C P. Electrolytic CO2 reduction in tandem with oxidative organic chemistry[J]. ACS Cent. Sci., 2017, 3(7): 778-783. |
[11] | Xie Y A, Zhou Z Y, Yang N J, Zhao G H. An overall reaction integrated with highly selective oxidation of 5‐hydroxymethylfurfural and efficient hydrogen evolution[J]. Adv. Funct. Mater., 2021, 31(34): 2102886. |
[12] | Wang T H, Tao L, Zhu X R, Chen C, Chen W, Du S Q, Zhou Y Y, Zhou B, Wang D D, Xie C, Long P, Li W, Wang, Y Y, Chen R, Zou Y Q, Fu X Z, Li Y F, Duan X F, Wang S Y. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction[J]. Nat. Catal., 2022, 5(1): 66-73. |
[13] | Chung M, Jin K, Zeng J S, Manthiram K. Mechanism of chlorine-mediated electrochemical ethylene oxidation in saline water[J]. ACS Catal., 2020, 10(23): 14015-14023. |
[14] | Hong J C, Kuo T C, Yang G L, Hsieh C T, Shen M H, Chao T H, Lu Q, Cheng M J. Atomistic insights into Cl--Triggered highly selective ethylene electrochemical oxidation to epoxide on RuO2: Unexpected role of the in situ generated intermediate to achieve active site isolation[J]. ACS Catal., 2021, 11(21): 13660-13669. |
[15] | Winiwarter A, Silvioli L, Scott S B, Enemark-Rasmussen K, Sari? M, Trimarco D B, Vesborg P C K, Moses P G, Stephens I E L, Seger B, Rossmeisl J, Chorkendorff I. Towards an atomistic understanding of electrocatalytic partial hydrocarbon oxidation: propene on palladium[J]. Energy & Environ. Sci., 2019, 12(3): 1055-1067. |
[16] | ?ebera J, Hoffmannová H, Krtil P, Samec Z, Záli? S. Electrochemical and density functional studies of the catalytic ethylene oxidation on nanostructured Au electrodes[J]. Catal. Today, 2010, 158(1-2): 29-34. |
[17] | Xu L P, Xie Y, Li L J, Hu Z F, Wang Y, Yu J C. Highly selective photocatalytic synthesis of ethylene-derived commodity chemicals on biobr nanosheets[J]. Mater. Today Phys., 2021, 21: 100551. |
[18] | Jirkovsky J S, Busch M, Ahlberg E, Panas I, Krtil P. Switching on the electrocatalytic ethene epoxidation on nanocrystalline RuO2[J]. J. Am. Chem. Soc., 2011, 133(15): 5882-5892. |
[19] | Schalck J, Hereijgers J, Guffens W, Breugelmans T. The bromine mediated electrosynthesis of ethylene oxide from ethylene in continuous flow-through operation[J]. Chem. Eng. J., 2022, 446(2): 136750. |
[20] | Dahms H, Bockris J O'M. The relative electrocatalytic activity of noble metals in the oxidation of ethylene[J]. J. Electrochem. Soc., 1964, 111(6): 728. |
[21] | Blake A R, Sunderland J G, Kuhn A T. The partial anodic oxidation of ethylene on palladium[J]. J. Chem. Soc. A, 1969: 3015-3018. |
[22] | Lum Y, Huang J E, Wang Z, Luo M, Nam D H, Leow W R, Chen B, Wicks J, Li YC, Wang Y, Dinh C T, Li J, Zhuang T T, Li F, Sham T K, Sinton D, Sargent E H. Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol[J]. Nat. Catal., 2020, 3(1): 14-22. |
[23] | F. Goodridge CJHK. Oxidation of ethylene at a palladium electrode[J]. Trans. Faraday Soc., 1970, 66: 2889-2896. |
[24] | Triaca W E, Castroluna A M, Arvia A J. The electrocatalytic oxidation of ethylene on platinized platinum at different saturation pressures[J]. J. Electrochem. Soc., 1980, 127(4): 827-833. |
[25] | Boyd M J, Latimer A A, Dickens C F, Nielander A C, Hahn C, N?rskov J K, Higgins D C, Jaramillo T F. Electro-oxidation of methane on platinum under ambient conditions[J]. ACS Catal., 2019, 9(8): 7578-7587. |
[26] | Spendelow J S, Goodpaster J D, Kenis P J A, Wieckowski A. Mechanism of Co oxidation on Pt(111) in alkaline media[J]. J. Phys. Chem. B, 2006, 110(19): 9545-9555. |
[27] | Birss V I, Beck V H, Zhang A J, Vanysek P. Properties of thin, hydrous Pd oxide films[J]. J. Electroanal. Chem., 1996, 429(1-2): 175-184. |
[28] | Jaksic M M, Johansen B, Tunold R. Electrochemical-behavior of palladium in acidic and alkaline-solutions of heavy and regular water[J]. Int. J. Hydrog. Energy, 1993, 18(2): 111-124. |
[29] | Chierchie T, Mayer C, Lorenz W J. Structural changes of surface oxide layers on palladium[J]. J. Electroanal. Chem., 1982, 135(2): 211-220. |
[30] | Grden M, Lukaszewski M, Jerkiewicz G, Czerwinski A. Electrochemical behaviour of palladium electrode: oxidation, electrodissolution and ionic adsorption[J]. Electrochim. Acta, 2008, 53(26): 7583-7598. |
[31] | Dall'Antonia L H, remiliosi-Filho G, Jerkiewicz G. Influence of temperature on the growth of surface oxides on palladium electrodes[J]. J. Electroanal. Chem., 2001, 502(1-2): 72-81. |
[32] | Sashikata K, Matsui Y, Itaya K, Soriaga M P. Adsorbed-iodine-catalyzed dissolution of Pd single-crystal electrodes: studies by electrochemical scanning tunneling microscopy[J]. J. Phys. Chem., 1996, 100(51): 20027-20034. |
[33] | Perdriel CL, Custidiano E, Arvia A J. Modifications of palladium electrode surfaces produced by periodic potential treatments[J]. J. Electroanal. Chem., 1988, 246(1): 165-180. |
[34] | Juodkazis K, Juodkazyte J, Sebeka B, Stalnionis G, Lukinskas A. Anodic dissolution of palladium in sulfuric acid: an electrochemical quartz crystal microbalance study[J]. Russ. J. Electrochem., 2003, 39(9): 954-959. |
[35] | Hammer B, Norskov J K. Why gold is the noblest of all the metals[J]. Nature, 1995, 376(6537): 238-240. |
/
〈 |
|
〉 |