欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

锂-氧气电池:正极催化剂的最新进展与挑战

  • 温波 ,
  • 朱卓 ,
  • 李福军
展开
  • a南开大学化学学院,先进能源材料化学教育部重点实验室,新能源转化与存储交叉科学中心,天津 300071
    b天津物质绿色创造与制造海河实验室,天津 300192

收稿日期: 2022-05-24

  修回日期: 2022-06-08

  录用日期: 2022-06-22

  网络出版日期: 2022-06-24

Advances and Challenges on Cathode Catalysts for Lithium-Oxygen Batteries

  • Bo Wen ,
  • Zhuo Zhu ,
  • Fu-Jun Li
Expand
  • aKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
    bHaihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
*Tel: (86-22)23509571, E-mail address: fujunli@nankai.edu.cn.

Received date: 2022-05-24

  Revised date: 2022-06-08

  Accepted date: 2022-06-22

  Online published: 2022-06-24

摘要

非质子锂-氧气电池具有高理论能量密度,在过去几年里受到了广泛关注。然而,动力学缓慢的氧还原反应(ORR)/氧析出反应(OER)和放电产物Li2O2导电性差导致锂-氧气电池过电位大,放电容量有限,循环寿命短。开发有效的锂-氧气电池正极催化剂可以调控放电与充电过程中Li2O2的形成和可逆分解,减小放电/充电极化。尽管提升ORR/OER动力学的正极催化剂已经取得了一系列重要进展,但是对正极在放电和充电中Li2O2生成和分解过程的理解依然是不足的。这篇综述聚焦于锂-氧气电池正极催化剂的最新进展,总结了催化剂与Li2O2生成/分解的作用关系,本文首先指出了锂-氧气电池正极面临的科学问题,包括动力学缓慢的ORR/OER过程和导电性差的反应产物Li2O2钝化电极,并提出了锂-氧气电池正极设计准则。通过对最近报道的正极催化剂进行分类讨论,明晰调控催化剂活性位点策略,理解在正极反应过程中不同催化剂的活性位点对反应中间产物的吸附状态,以及对Li2O2生成和分解的作用机制,评估了不同类型正极催化剂在锂-氧气电池的潜在应用。最后总结了锂-氧气电池正极催化剂依然存在的挑战,例如阐明正极催化剂活性位点与附着的Li2O2界面在充放电过程中的变化,并揭示了设计高效正极催化剂的决定因素,展望了通过光/磁协助、负极保护以及电解液设计等策略,进一步推动锂-氧气电池的应用。

本文引用格式

温波 , 朱卓 , 李福军 . 锂-氧气电池:正极催化剂的最新进展与挑战[J]. 电化学, 2023 , 29(2) : 2215001 . DOI: 10.13208/j.electrochem.2215001

Abstract

Aprotic lithium-oxygen batteries (LOBs) with high theoretical energy density have received considerable attention over the past years. However, the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) at cathodes suffer from slow kinetics for large overvoltages in LOBs. Significant advances on catalysts have been achieved to accelerate cathode kinetics, but understanding on the formation/decomposition processes of Li2O2 is limited. Herein, this review highlights the fundamental understanding of the correlation between catalysts and formation/decomposition of Li2O2. Various types of cathode catalysts are discussed to reveal the mechanism of formation/decomposition of Li2O2, aiming to present the prerequisites for the design of highly efficient cathode catalysts. Future prospects of comprehensive consideration on introduction of light or magnetism, protection of Li metal anode, and electrolyte engineering are presented for the further development of LOBs.

参考文献

[1] Liu T, Vivek J P, Zhao E W, Lei J, Garcia-Araez N, Grey C P. Current challenges and routes forward for nonaqueous lithium-air batteries[J]. Chem. Rev., 2020, 120(14): 6558-6625.
[2] Zhang P, Ding M J, Li X X, Li C X, Li Z Q, Yin L W. Challenges and strategy on parasitic reaction for high-performance nonaqueous lithium-oxygen batteries[J]. Adv. Energy Mater., 2020, 10(40): 2001789.
[3] Abraham K M, Jiang Z. A polymer electrolyte-based rechargeable lithium/oxygen battery[J]. J. Electrochem. Soc., 1996, 143(1): 1-5.
[4] Kwak W J, Rosy, Sharon D, Xia C, Kim H, Johnson L R, Bruce P G, Nazar L F, Sun Y K, Frimer A A, Noked M, Freunberger S A, Aurbach D. Lithium-oxygen batteries and related systems: Potential, status, and future[J]. Chem. Rev., 2020, 120(14): 6626-6683.
[5] Chen K, Yang D Y, Huang G, Zhang X B. Lithium-air batteries: Air-electrochemistry and anode stabilization[J]. Acc. Chem. Res., 2021, 54(3): 632-641.
[6] Li F J, Chen J. Mechanistic evolution of aprotic lithium-oxygen batteries[J]. Adv. Energy Mater., 2017, 7(24): 1602934.
[7] Lv Q L, Zhu Z, Ni Y X, Geng J R, Li F J. Spin-state manipulation of two-dimensional metal-organic framework with enhanced metal-oxygen covalency for lithium-oxygen batteries[J]. Angew. Chem. Int. Ed., 2022, 61(8): e202114293.
[8] Hou Y, Wang J, Liu J Q, Hou C X, Xiu Z H, Fan Y Q, Zhao L L, Zhai Y J, Li H Y, Zeng J, Gao X, Zhou S, Li D W, Li Y, Dang F, Liang K, Chen P, Li C M, Zhao D Y, Kong B. Interfacial super-assembled porous CeO2/C frameworks featuring efficient and sensitive decomposing Li2O2 for smart Li-O2 batteries[J]. Adv. Energy Mater., 2019, 9(40): 1901751.
[9] Hu X L, Luo G, Zhao Q N, Wu D, Yang T X, Wen J, Wang R H, Xu C H, Hu N. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries[J]. J. Am. Chem. Soc., 2020, 142(39): 16776-16786.
[10] Cai Y C, Zhang Q, Lu Y, Hao Z M, Ni Y X, Chen J. An ionic liquid electrolyte with enhanced Li+ transport ability enables stable Li deposition for high-performance Li-O2 batteries[J]. Angew. Chem. Int. Ed., 2021, 60(49): 25973-25980.
[11] Zhang X, Xie Z J, Zhou Z. Recent progress in protecting lithium anodes for Li-O2 batteries[J]. ChemElectroChem, 2019, 6 (7): 1969-1977.
[12] Ma S Y, Yao H C, Li Z J, Liu Q C. Tuning the nucleation and decomposition of Li2O2 by fluorine-doped carbon vesicles towards high performance Li-O2 batteries[J]. J. Energy Chem., 2022, 70: 614-622.
[13] Li Y, Zhang R, Chen B, Wang N, Sha J W, Ma L Y, Zhao D D, Liu E Z, Zhu S, Shi C S, Zhao N Q. Induced construction of large-area amorphous Li2O2 film via elemental co-doping and spatial confinement to achieve high-performance Li-O2 batteries[J]. Energy Storage Mater., 2022, 44: 285-295.
[14] Xu H Y, Zheng R X, Du D Y, Ren L F, Li R J, Wen X J, Zhao C, Shu C Z. V2C Mxene enriched with-O termination as high-efficiency electrocatalyst for lithium-oxygen battery[J]. Appl. Mater. Today, 2022, 27: 101464.
[15] Xia H, Xie Q F, Tian Y H, Chen Q, Wen M, Zhang J L, Wang Y, Tang Y P, Zhang S Q. High-efficient CoPt/activated functional carbon catalyst for Li-O2 batteries[J]. Nano Energy, 2021, 84: 105877.
[16] Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Li-O2 and Li-S batteries with high energy storage[J]. Nat. Mater., 2012, 11: 19-29.
[17] Aurbach D, Mccloskey B D, Nazar L F, Bruce P G. Advances in understanding mechanisms underpinning lithium-air batteries[J]. Nat. Energy, 2016, 1: 16128.
[18] Laoire C O, Mukerjee S, Abraham K M, Plichta E J, Hendrickson M A. Elucidating the mechanism of oxygen reduction for lithium-air battery applications[J]. J. Phys. Chem. C, 2009, 113(46): 20127-20134.
[19] Abraham K. A brief history of non-aqueous metal-air batteries[J]. ECS Trans., 2008, 3(42): 67.
[20] Lyu Z Y, Yang L J, Luan Y P, Wang X R, Wang L J, Hu Z H, Lu J P, Xiao S N, Zhang F, Wang X Z, Huo F W, Huang W, Hu Z, Chen W. Effect of oxygen adsorbability on the control of Li2O2 growth in Li-O2 batteries: Implications for cathode catalyst design[J]. Nano Energy, 2017, 36: 68-75.
[21] Johnson L, Li C M, Liu Z, Chen Y H, Freunberger S A, Ashok P C, Praveen B B, Dholakia K, Tarascon J M, Bruce P G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries[J]. Nat. Chem., 2014, 6(12): 1091-1099.
[22] Oh S H, Black R, Pomerantseva E, Lee J H, Nazar L F. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries[J]. Nat. Chem., 2012, 4(12): 1004-1010.
[23] Wang D, Mu X W, He P, Zhou H S. Materials for advanced Li-O2 batteries: Explorations, challenges and prospects[J]. Mater. Today, 2019, 26: 87-99.
[24] Feng N N, He P, Zhou H S. Critical challenges in rechargeable aprotic Li-O2 batteries[J]. Adv. Energy Mater., 2016, 6(9): 1502303.
[25] Zheng R X, Shu C Z, Chen X F, Yan Y, He M, Du D Y, Ren L F, Hu A J, Long J P. Unique intermediate adsorption enabled by anion vacancies in metal sulfide embedded MXene nanosheets overcoming kinetic barriers of oxygen electrode reactions in lithium-oxygen batteries[J]. Energy Storage Mater., 2021, 40: 41-50.
[26] Sun B, Guo L M, Ju Y H, Munroe P, Wang E, Peng Z Q, Wang G X. Unraveling the catalytic activities of ruthenium nanocrystals in high performance aprotic Li-O2 batteries[J]. Nano Energy, 2016, 28: 486-494.
[27] Wang Y, Liang Z J, Zou Q L, Cong G T, Lu Y C. Mechanistic insights into catalyst-assisted nonaqueous oxygen evolution reaction in lithium-oxygen batteries[J]. J. Phys. Chem. C, 2016, 120(12): 6459-6466.
[28] Lodge A W, Lacey M J, Fitt M, Garcia-Araez N, Owen J R. Critical appraisal on the role of catalysts for the oxygen reduction reaction in lithium-oxygen batteries[J]. Electrochim. Acta, 2014, 140: 168-173.
[29] Black R, Lee J H, Adams B, Mims C A, Nazar L F. The role of catalysts and peroxide oxidation in lithium-oxygen batteries[J]. Angew. Chem. Int. Ed., 2013, 52(1): 392-396.
[30] Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce P G. Rechargeable Li2O2 electrode for lithium batteries[J]. J. Am. Chem. Soc., 2006, 128(4): 1390-1393.
[31] Jiang H R, Zhao T S, Shi L, Tan P, An L. First-principles study of nitrogen-, boron-doped graphene and co-doped graphene as the potential catalysts in nonaqueous Li-O2 batteries[J]. J. Phys. Chem. C, 2016, 120(12): 6612-6618.
[32] Wong R A, Dutta A, Yang C Z, Yamanaka K, Ohta T, Nakao A, Waki K, Byon H R. Structurally tuning Li2O2 by controlling the surface properties of carbon electrodes: Implications for Li-O2 batteries[J]. Chem. Mater., 2016, 28(21): 8006-8015.
[33] Qian Z Y, Guo R, Ma Y L, Li C J, Du L, Wang Y, Du C Y, Huo H, Yin G P. Se-doped carbon as highly stable cathode material for high energy nonaqueous Li-O2 batteries[J]. Chem. Eng. Sci., 2020, 214: 115413.
[34] Zhao T, Yao Y, Yuan Y F, Wang M L, Wu F, Amine K, Lu J. A universal method to fabricating porous carbon for Li-O2 battery[J]. Nano Energy, 2021, 82: 105782.
[35] Mccloskey B D, Speidel A, Scheffler R, Miller D C, Viswanathan V, Hummelsh?j J S, N?rskov J K, Luntz A C. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries[J]. J. Phys. Chem. Lett., 2012, 3(8): 997-1001.
[36] Gallant B M, Mitchell R R, Kwabi D G, Zhou J G, Zuin L, Thompson C V, Shao-Horn Y. Chemical and morphological changes of Li-O2 battery electrodes upon cycling[J]. J. Phys. Chem. C, 2012, 116(39): 20800-20805.
[37] Nasybulin E N, Xu W, Mehdi B L, Thomsen E, Engelhard M H, Masse? R C, Bhattacharya P, Gu M, Bennett W, Nie Z M, Wang C M, Browning N D. Formation of interfacial layer and long-term cyclability of Li-O2 batteries[J]. ACS Appl. Mater. Inter., 2014, 6(16): 14141-14151.
[38] Itkis D M, Semenenko D A, Kataev E Y, Belova A I, Neudachina V S, Sirotina A P, Ha?vecker M, Teschner D, Knop-Gericke A, Dudin P, Barinov A, Goodilin E A, Shao-Horn Y, Yashina L V. Reactivity of carbon in lithium-oxygen battery positive electrodes[J]. Nano Lett., 2013, 13(10): 4697-4701.
[39] Shen Z Z, Zhou C, Wen R, Wan L J. Surface mechanism of catalytic electrodes in lithium-oxygen batteries: How nanostructures mediate the interfacial reactions[J]. J. Am. Chem. Soc., 2020, 142(37): 16007-16015.
[40] Zhou Y, Yin K, Gu Q F, Tao L, Li Y J, Tan H, Zhou J H, Zhang W S, Li H B, Guo S J. Lewis-acidic PtIr multipods enable high-performance Li-O2 batteries[J]. Angew. Chem. Int. Ed., 2021, 60(51): 26592-26598.
[41] Yao W T, Yuan Y F, Tan G Q, Liu C, Cheng M, Yurkiv V, Bi X X, Long F, Friedrich C R, Mashayek F, Amine K, Lu J, Shahbazian-Yassar R. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts[J]. J. Am. Chem. Soc., 2019, 141(32): 12832-12838.
[42] Sun Z H, Cao X C, Tian M, Zeng K, Jiang Y X, Rummeli M H, Strasser P, Yang R Z. Synergized multimetal oxides with amorphous/crystalline heterostructure as efficient electrocatalysts for lithium-oxygen batteries[J]. Adv. Energy Mater., 2021, 11(22): 2100110.
[43] Zhou Y, Gu Q F, Li Y J, Tao L, Tan H, Yin K, Zhou J H, Guo S J. Cesium lead bromide perovskite-based lithium-oxygen batteries[J]. Nano Lett., 2021, 21(11): 4861-4867.
[44] Sadighi Z, Liu J P, Zhao L, Ciucci F, Kim J K. Metallic MoS2 nanosheets: Multifunctional electrocatalyst for the ORR, OER and Li-O2 batteries[J]. Nanoscale, 2018, 10(47): 22549-22559.
[45] He B, Li G Y, Li J J, Wang J, Tong H, Fan Y Q, Wang W L, Sun S H, Dang F. MoSe2@CNT core-shell nanostructures as grain promoters featuring a direct Li2O2 formation/decomposition catalytic capability in lithium-oxygen batteries[J]. Adv. Energy Mater., 2021, 11(18): 2003263.
[46] Zhang G L, Li G Y, Wang J, Tong H, Wang J C, Du Y, Sun S H, Dang F. 2D SnSe cathode catalyst featuring an efficient facet-dependent selective Li2O2 growth/decomposition for Li-oxygen batteries[J]. Adv. Energy Mater., 2022, 12(21): 2103910.
[47] Li G Y, Li N, Peng S T, He B, Wang J, Du Y, Zhang W B, Han K, Dang F. Highly efficient Nb2C MXene cathode catalyst with uniform O-terminated surface for lithium-oxygen batteries[J]. Adv. Energy Mater., 2021, 11(1): 2002721.
[48] Wang P, Zhao D Y, Hui X B, Qian Z, Zhang P, Ren Y Y, Lin Y, Zhang Z W, Yin L W. Bifunctional catalytic activity guided by rich crystal defects in Ti3C2 MXene quantum dot clusters for Li-O2 batteries[J]. Adv. Energy Mater., 2021, 11(32): 2003069.
[49] Wang P, Ren Y Y, Wang R T, Zhang P, Ding M J, Li C X, Zhao D Y, Qian Z, Zhang Z W, Zhang L Y, Yin L W. Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries[J]. Nat. Commun., 2020, 11(1): 1576.
[50] Geng J R, Ni Y X, Zhu Z, Wu Q, Gao S N, Hua W B, Indris S, Chen J, Li F J. Reversible metal and ligand redox chemistry in two-dimensional iron-organic framework for sustainable lithium-ion batteries[J]. J. Am. Chem. Soc., 2023, 145(3): 1564-1571.
[51] Xiao L, Yi J Y, Kou Z K, Li E W, Deng B H, Wang J, Liu J P. Combinational design of electronic structure and nanoarray architecture achieves a low-overpotential oxygen electrode for aprotic lithium-oxygen batteries[J]. Small Methods, 2020, 4(3): 1900619.
[52] Kondori A, Jiang Z, Esmaeilirad M, Saray M T, Kakekhani A, Kucuk K, Delgado P N M, Maghsoudipour S, Hayes J, Johnson C S, Segre C U, Shahbazian-Yassar R, Rappe A M, Asadi M. Kinetically stable oxide overlayers on Mo3P nanoparticles enabling lithium-air batteries with low overpotentials and long cycle life[J]. Adv. Mater., 2020, 32(50): 2004028.
[53] Lee G H, Sung M C, Kim Y S, Ju B, Kim D W. Organogermanium nanowire cathodes for efficient lithium-oxygen batteries[J]. ACS Nano, 2020, 14(11): 15894-15903.
[54] Zhu Z, Shi X M, Fan G L, Li F J, Chen J. Photo-energy conversion and storage in an aprotic Li-O2 battery[J]. Angew. Chem. Int. Ed., 2019, 58(52): 19021-19026.
[55] Zhu D D, Zhao Q C, Fan G L, Zhao S, Wang L B, Li F J, Chen J. Photoinduced oxygen reduction reaction boosts the output voltage of a zinc-air battery[J]. Angew. Chem. Int. Ed., 2019, 58(36): 12460-12464.
[56] Du D F, Zhao S, Zhu Z, Li F J, Chen J. Photo-excited oxygen reduction and oxygen evolution reactions enable a high-performance Zn-air battery[J]. Angew. Chem. Int. Ed., 2020, 59(41): 18140-18144.
[57] Lv Q L, Zhu Z, Zhao S, Wang L B, Zhao Q, Li F J, Archer L A, Chen J. Semiconducting metal-organic polymer nanosheets for a photoinvolved Li-O2 battery under visible light[J]. J. Am. Chem. Soc., 2021, 143(4): 1941-1947.
[58] Zhu Z, Ni Y X, Lv Q L, Geng J R, Xiea W, Li F J, Chen J. Surface plasmon mediates the visible light-responsive lithium-oxygen battery with Au nanoparticles on defective carbon nitride[J]. PNAS, 2021, 118(17): e2024619118.
[59] Zhu Z, Lv Q L, Ni Y X, Gao S N, Geng J R, Liang J, Li F J. Internal electric field and interfacial bonding engineered step-scheme junction for a visible-light-involved lithium-oxygen battery[J]. Angew. Chem. Int. Ed., 2022, 61(12): e202116699.
[60] Du D F, Zhu Z, Chan K Y, Li F J, Chen J. Photoelectrochemistry of oxygen in rechargeable Li-O2 batteries[J]. Chem. Soc. Rev., 2022, 51(6): 1846-1860.
[61] Zhu Z, Shi X M, Zhu D D, Wang L B, Lei K X, Li F J. A hybrid Na//K+-containing electrolyte//O2 battery with high rechargeability and cycle stability[J]. Research, 2019, 2019: 6180615.
[62] Zhao S, Wang C C, Du D F, Li L, Chou S L, Li F J, Chen J. Bifunctional effects of cation additive on Na-O2 batteries[J]. Angew. Chem. Int. Ed., 2021, 60(6): 3205-3211.
[63] Zhou X Z, Zhang Q, Zhu Z, Cai Y C, Li H X, Li F J. Anion reinforced solvation for a gradient inorganic-rich interphase enables high-rate and stable sodium batteries[J]. Angew. Chem. Int. Ed., 2022, 61(30): e202205045.
[64] Cao W Z, Li Q, Yu X Q, Li H. Controlling Li deposition below the interface[J]. eScience, 2022, 2(1): 47-78.
文章导航

/