吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究
收稿日期: 2022-04-13
修回日期: 2022-05-17
网络出版日期: 2022-05-25
A Co Porphyrin with Electron-Withdrawing and Hydrophilic Substituents for Improved Electrocatalytic Oxygen Reduction
# These authors contributed equally to this work.
Received date: 2022-04-13
Revised date: 2022-05-17
Online published: 2022-05-25
研究影响电催化氧还原反应活性的因素对于合理设计高效的氧还原反应催化剂至关重要。调节催化剂电子结构通常被用于精确调控电催化氧还原反应活性。然而, 该反应发生在液/气/固界面, 很少有报道调控分子催化剂的亲疏水性来提高其催化活性。在此, 我们报道了两种钴卟啉NO2-CoP(5,10,15,20-四(4-硝基苯基)钴卟啉)和5F-CoP(5,10,15,20-四(五氟苯基)钴卟啉)并研究了其电催化氧还原反应性能。通过同时调控meso-位取代基的电子结构和亲水性能, NO2-CoP显示出比5F-CoP更高的电催化氧还原反应活性, 其半波电位向阳极方向移动近60 mV。NO2-CoP比5F-CoP具有更好的亲水性。理论计算表明, NO2-CoP比5F-CoP更容易有效地与O2分子结合形成CoIII-O2·-。这项工作提供了一个简单而有效的策略, 通过使用吸电子和亲水取代基来提高钴卟啉的氧还原反应活性。该策略对于设计和开发其他用于电催化的分子催化剂体系也具有重要的启发意义。
郭鸿波 , 王亚妮 , 郭凯 , 雷海涛 , 梁作中 , 张学鹏 , 曹睿 . 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学, 2022 , 28(9) : 2214002 . DOI: 10.13208/j.electrochem.2214002
Understanding factors that influence the catalyst activity for oxygen reduction reaction (ORR) is essential for the rational design of efficient ORR catalysts. Regulating catalyst electronic structure is commonly used to fine-tune electrocatalytic ORR activity. However, modifying the hydrophilicity of catalysts has been rarely reported to improve ORR, which happens at the liquid/gas/solid interface. Herein, we report on two Co porphyrins, namely, NO2-CoP (Co complex of 5,10,15,20-tetrakis(4-nitrophenyl)porphyrin) and 5F-CoP (Co complex of 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin), and their electrocatalytic ORR features. By simultaneously controlling the electronic structure and hydrophilic property of the meso-substituents, the NO2-CoP showed higher electrocatalytic activity than the 5F-CoP by shifting the ORR half-wave potential to the anodic direction by 60 mV. Compared with the 5F-CoP, the complex NO2-CoP was more hydrophilic. Theoretical calculations suggest that NO2-CoP is also more efficient than 5F-CoP to bind with an O2 molecule to form CoIII-O2·-. This work provides a simple but an effective strategy to improve ORR activity of Co porphyrins by using electron-withdrawing and hydrophilic substituents. This strategy will be also valuable for the design of other ORR molecular electrocatalysts.
[1] | Zaman S, Huang L, Douka A I, Yang H, You B, Xia B Y. Oxygen reduction electrocatalysts toward practical fuel cells: Progress and perspectives[J]. Angew. Chem. Int. Ed., 2021, 60(33): 17832-17852. |
[2] | Zhao C X, Liu J N, Wang J, Ren D, Li B Q, Zhang Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts[J]. Chem. Soc. Rev., 2021, 50(13): 7745-7778. |
[3] | Amanullah S, Das P K, Samanta S, Dey A. Tuning the thermodynamic onset potential of electrocatalytic O2 reduction reaction by synthetic iron-porphyrin complexes[J]. Chem. Commun., 2015, 51(49): 10010-10013. |
[4] | Kong J F, Cheng W L. Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction[J]. Chin. J. Catal., 2017, 38(6): 951-969. |
[5] | Song P, Ruan M B, Liu J, Ran G J, Xu W L. Recent research progress for non-Pt-based oxygen reduction reaction electrocatalysts in fuel cell[J]. J. Electrochem., 2015, 21(2): 130-137. |
[6] | Wang D, Pan X N, Yang P X, Li R P, Xu H, Li Y, Meng F, Zhang J Q, An M Z. Transition metal and nitrogen Co-doped carbon-based electrocatalysts for the oxygen reduction reaction: From active site insights to the rational design of precursors and structures[J]. ChemSusChem, 2021, 14(1): 33-55. |
[7] | Zhao T, Luo E G, Wang X, Ge J J, Liu C P, Xing W. Challenges in the activity and stability of Pt-based catalysts toward ORR[J]. J. Electrochem., 2020, 26(1): 84-95. |
[8] | Kumar A, Zhang Y, Jia Y, Liu W, Sun X M. Redox chemistry of N4-Fe2+ in iron phthalocyanines for oxygen reduction reaction[J]. Chin. J. Catal., 2021, 42(8): 1404-1412. |
[9] | Fukuzumi S, Lee Y M, Nam W. Recent progress in production and usage of hydrogen peroxide[J]. Chin. J Catal., 2021, 42(8): 1241-1252. |
[10] | Dey S, Mondal B, Chatterjee S, Rana A, Amanullah S K, Dey A. Molecular electrocatalysts for the oxygen reduction reaction[J]. Nat. Rev. Chem., 2017, 1(12): 0098. |
[11] | Pegis M L, Wise C F, Martin D J, Mayer J M. Oxygen reduction by homogeneous molecular catalysts and electrocatalysts[J]. Chem. Rev., 2018, 118(5): 2340-2391. |
[12] | Zhang W, Lai W Z, Cao R. Energy-related small molecule activation reactions: Oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems[J]. Chem. Rev., 2017, 117(4): 3717-3797. |
[13] | Passard G, Dogutan D K, Qiu M T, Costentin C, Nocera D G. Oxygen reduction reaction promoted by manganese porphyrins[J]. ACS Catal., 2018, 8(9): 8671-8679. |
[14] | Zhao Y M, Yu G Q, Wang F F, Wei P J, Liu J G. Bioinspired transition-metal complexes as electrocatalysts for the oxygen reduction reaction[J]. Chem. Eur. J., 2019, 25(15): 3726-3739. |
[15] | Zhou Y, Xing Y F, Wen J, Ma H B, Wang F B, Xia X H. Axial ligands tailoring the ORR activity of cobalt porphyrin[J]. Sci. Bull., 2019, 64(16): 1158-1166. |
[16] | Xie L S, Zhang X P, Zhao B, Li P, Qi J, Guo X N, Wang B, Lei H T, Zhang W, Apfel U P, Cao R. Enzyme-inspired iron porphyrins for improved electrocatalytic oxygen reduction and evolution reactions[J]. Angew. Chem. Int. Ed., 2021, 60(14): 7576-7581. |
[17] | Lv H Y, Guo H B, Guo K, Lei H T, Zhang W, Zheng H Q, Liang Z Z, Cao R. Substituent position effect of Co porphyrin on oxygen electrocatalysis[J]. Chin. Chem. Lett., 2021, 32(9): 2841-2845. |
[18] | Lv B, Li X L, Guo K, Ma J, Wang Y Z, Lei H T, Wang F, Jin X T, Zhang Q X, Zhang W, Long R, Xiong Y J, Apfel U P, Cao R. Controlling oxygen reduction selectivity through steric effects: Electrocatalytic two-electron and four-electron oxygen reduction with cobalt porphyrin atropisomers[J]. Angew. Chem. Int. Ed., 2021, 60(23): 12742-12746. |
[19] | Hong Y H, Han J W, Jung J, Nakagawa T, Lee Y M, Nam W, Fukuzumi S. Photocatalytic oxygenation reactions with a cobalt porphyrin complex using water as an oxygen source and dioxygen as an oxidant[J]. J. Am. Chem. Soc., 2019, 141(23): 9155-9159. |
[20] | Li X L, Lei H T, Xie L S, Wang N, Zhang W, Cao R. Metalloporphyrins as catalytic models for studying hydrogen and oxygen evolution and oxygen reduction reactions[J]. Acc. Chem. Res., 2022, 55(6): 878-892. |
[21] | Zhang R, Warren J J. Recent developments in metallopo-rphyrin electrocatalysts for reduction of small molecules: Strategies for managing electron and proton transfer reactions[J]. ChemSusChem, 2021, 14(1): 293-302. |
[22] | Mondal B, Sen P, Dey A. Proton reduction in the presence of oxygen by iron porphyrin enabled with 2nd sphere redox active ferrocenes[J]. Chin. J. Catal., 2021, 42(8): 1327-1331. |
[23] | Grinstaff M W, Hill M G, Labinger J A, Gray H B. Mech-anism of catalytic oxygenation of alkanes by halogenated iron porphyrins[J]. Science, 1994, 264(5163): 1311-1313. |
[24] | Zagal J H, Recio F J, Gutierrez C A, Zuniga C, Paez M A, Caro C A. Towards a unified way of comparing the electrocatalytic activity MN4 macrocyclic metal catalysts for O2 reduction on the basis of the reversible potential of the reaction[J]. Electrochem. Commun., 2014, 41: 24-26. |
[25] | Li Y L, Wang N, Lei H T, Li X L, Zheng H Q, Wang H Y, Zhang W, Cao R. Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction[J]. Coord. Chem. Rev., 2021, 442: 213996. |
[26] | Masa J, Schuhmann W. Systematic selection of metalloporphyrin-based catalysts for oxygen reduction by modulation of the donor-acceptor intermolecular hardness[J]. Chem. Eur. J., 2013, 19(29): 9644-9654. |
[27] | Zhao C X, Li B Q, Liu J N, Huang J Q, Zhang Q. Transition metal coordinated framework porphyrin for electrocatalytic oxygen reduction[J]. Chin. Chem. Lett., 2019, 30(4): 911-914. |
[28] | Wang Y H, Mondal B, Stahl S S. Molecular cobalt catalysts for O2 reduction to H2O2: Benchmarking catalyst performance via rate-overpotential correlations[J]. ACS Catal., 2020, 10(20): 12031-12039. |
[29] | Lei H T, Zhang Q X, Wang Y B, Gao Y M, Wang Y Z, Liang Z Z, Zhang W, Cao R. Significantly boosted oxygen electrocatalysis with cooperation between cobalt and iron porphyrins dagger[J]. Dalton Trans., 2021, 50(15): 5120-5123. |
[30] | Liu Y J, Zhou G J, Zhang Z Y, Lei H T, Yao Z, Li J F, Lin J, Cao R. Significantly improved electrocatalytic oxygen reduction by an asymmetrical pacman dinuclear cobalt(II) porphyrin-porphyrin dyad[J]. Chem. Sci., 2020, 11(1): 87-96. |
[31] | Oldacre A N, Friedman A E, Cook T R. A self-assembled cofacial cobalt porphyrin prism for oxygen reduction catalysis[J]. J. Am. Chem. Soc., 2017, 139(4): 1424-1427. |
[32] | Zhang W, Shaikh A U, Tsui E Y, Swager T M. Cobalt porphyrin functionalized carbon nanotubes for oxygen reduction[J]. Chem. Mater., 2009, 21(14): 3234-3241. |
[33] | Liang Z Z, Guo H B, Zhou G J, Guo K, Wang B, Lei H T, Zhang W, Zheng H Q, Apfel U P, Cao R. Metal-organic-framework-supported molecular electrocatalysis for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2021, 60(15): 8472-8476. |
[34] | Crawley M R, Zhang D Y, Oldacre A N, Beavers C M, Friedman A E, Cook T R. Tuning the reactivity of cofacial porphyrin prisms for oxygen reduction using modular building blocks[J]. J. Am. Chem. Soc., 2021, 143(2): 1098-1106. |
[35] | Wan H, Jensen A W, Escudero-Escribano M, Rossmeisl J. Insights in the oxygen reduction reaction: From metallic electrocatalysts to diporphyrins[J]. ACS Catal., 2020, 10(11): 5979-5989. |
[36] | Sun B, Ou Z P, Meng D Y, Fang Y Y, Song Y, Zhu W H, Solntsev P V, Nemykin V N, Kadish K M. Electrochemistry and catalytic properties for dioxygen reduction using ferrocene-substituted cobalt porphyrins[J]. Inorg. Chem., 2014, 53(16): 8600-8609. |
[37] | Zhang Q X, Wang Y B, Wang Y Z, Yang S J, Wu X, Lv B, Wang N, Gao Y M, Xu X R, Lei H T, Cao R. Electropolymerization of cobalt porphyrins and corroles for the oxygen evolution reaction[J]. Chin. Chem. Lett., 2021, 32(12): 3807-3810. |
[38] | Song E H, Shi C N, Anson F C. Comparison of the behavior of several cobalt porphyrins as electrocatalysts for the reduction of O2 at graphite electrodes[J]. Langmuir, 1998, 14(15): 4315-4321. |
[39] | Xie L S, Li X L, Wang B, Meng J, Lei H T, Zhang W, Cao R. Molecular engineering of a 3D self-supported electrode for oxygen electrocatalysis in neutral media[J]. Angew. Chem. Int. Ed., 2019, 58(52): 18883-18887. |
[40] | Han J X, Wang N, Li X L, Zhang W, Cao R. Improving electrocatalytic oxygen reduction activity and selectivity with a cobalt corrole appended with multiple positively charged proton relay sites[J]. J. Phys. Chem. C, 2021, 125(45): 24805-24813. |
[41] | Sonkar P K, Prakash K, Yadav M, Ganesan V, Sankar M, Gupta R, Yadav D K. Co(II)-porphyrin-decorated carbon nanotubes as catalysts for oxygen reduction reactions: An approach for fuel cell improvement[J]. J. Mater. Chem. A, 2017, 5(13): 6263-6276. |
[42] | McGuire R, Dogutan D K, Teets T S, Suntivich J, Shao-Horn Y, Nocera D G. Oxygen reduction reactivity of cobalt(II) hangman porphyrins[J]. Chem. Sci., 2010, 1(3): 411-414. |
[43] | Liang Z, Wang H Y, Zheng H Q, Zhang W, Cao R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide[J]. Chem. Soc. Rev., 2021, 50(4): 2540-2581. |
[44] | Qin H N, Wang Y Z, Wang B, Duan X G, Lei H T, Zhang X P, Zheng H Q, Zhang W, Cao R. Cobalt porphyrins supported on carbon nanotubes as model catalysts of metal-N4/C sites for oxygen electrocatalysis[J]. J. Energy Chem., 2021, 53: 77-81. |
[45] | Xu W W, Lu Z Y, Sun X M, Jiang L, Duan X. Superwetting electrodes for gas-involving electrocatalysis[J]. Acc. Chem. Res., 2018, 51(7): 1590-1598. |
[46] | Longhi M, Cova C, Pargoletti E, Coduri M, Santangelo S, Patanè S, Ditaranto N, Cioffi N, Facibeni A, Scavini M. Synergistic effects of active sites’ nature and hydrophilicity on the oxygen reduction reaction activity of Pt-free catalysts[J]. Nanomaterials, 2018, 8(9): 643. |
[47] | Lei H T, Wang Y B, Zhang Q X, Cao R. First-row transition metal porphyrins for electrocatalytic hydrogen evolution — a SPP/JPP Young Investigator Award paper[J]. J. Porphyr. Phthalocyanines, 2020, 24(11-12): 1361-1371. |
[48] | Brüker AXS. APEX2 V2009. |
[49] | Sheldrick G. SADABS—Brüker AXS area detector scaling and absorption, version 2008/1. University of Göttingen, Germany, 2008. |
[50] | Sheldrick G M. Phase annealing in SHELX-90: Direct methods for larger structures[J]. Acta Cryst., 1990, 46: 467-473. |
[51] | Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Cryst., 2015, 71: 3-8. |
[52] | Xia B Y, Yan Y, Li N, Wu H B, Lou X W, Wang X. A metal-organic framework-derived bifunctional oxygen electrocatalyst[J]. Nat. Energy, 2016, 1: 15006. |
[53] | Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Fox D J. Gaussian16 Revision A. 03 (Wallingford, Ct: Gaussian Inc.), 2016. |
[54] | Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J]. J. Comp. Chem., 2011, 32(7): 1456-1465. |
[55] | Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys. Rev. A, 1988, 38(6): 3098-3100. |
[56] | Lee C T, Yang W T, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988, 37(2): 785-789. |
[57] | Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys., 1993, 98(7): 5648-5652. |
[58] | Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy[J]. Phys. Chem. Chem. Phys., 2005, 7(18): 3297-3305. |
[59] | Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models[J]. Chem. Rev., 2005, 105(8): 2999-3093. |
[60] | Reed A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint[J]. Chem. Rev., 1988, 88(6): 899-926. |
/
〈 |
|
〉 |