电子功能外延薄膜的电沉积
收稿日期: 2022-02-28
修回日期: 2022-05-04
网络出版日期: 2022-05-12
Electrodeposition of Functional Epitaxial Films for Electronics
Received date: 2022-02-28
Revised date: 2022-05-04
Online published: 2022-05-12
电沉积作为一种在温和条件下从溶液中合成材料的技术已被广泛应用于在导体和半导体基底表面合成各种功能材料。电沉积一般由人为施加于基底的电刺激(如:施加电位/电流)来触发。这种电刺激通过氧化或还原靠近基底表面的溶液层内部的离子、 分子或配合物从而使该溶液层偏离其热力学平衡状态,随后引起目标产物在基底表面的沉积。在电沉积过程中, 许多实验参数都可能从不同的方面对沉积物的物化性质造成影响。迄今为止,已通过电沉积制备出多种单质(包括金属和非金属单质)、 化合物(例如:金属氧化物、金属氢氧化物、 金属硫化物等)以及复合材料。电沉积制备的这些材料大多为多晶、 织构或外延薄膜的形式。其中, 外延薄膜是一种具有特定的面外和面内晶体生长取向且其晶体取向受基底控制的类单晶薄膜。由于外延薄膜中高度有序的原子排列,它们常呈现出独特的电磁性质。本文总结了常见的电沉积合成路线及影响沉积物外延生长的关键实验因素。此外, 本文简要介绍了用于表征外延薄膜的技术。最后, 本文还讨论了一些采用电沉积制备的具有特殊电子、 电磁及光电特性的功能外延薄膜。
黄葵 , 黄容姣 , 刘素琴 , 何震 . 电子功能外延薄膜的电沉积[J]. 电化学, 2022 , 28(7) : 2213006 . DOI: 10.13208/j.electrochem.2213006
Electrodeposition is a solution-based synthesis technique that can be used to fabricate various functional materials on conductive or semiconductive substrates under ambient conditions. Electrodeposition is usually triggered by an artificial electric stimulation (i.e., applied potential/current) to the substrate to oxidize or reduce ions, molecules, or complexes in the deposition solution layer near the substrate surface, which drives this solution layer to depart from its thermodynamic equilibrium and consequently causes the assembly of targeted deposits on the substrate. During electrodeposition, many experimental parameters could affect the properties of the deposits in different ways. To date, many elements (both metals and nonmetals), compounds (e.g., metal oxides, hydroxides, and chalcogenides), and composites have been electrodeposited, mostly as either polycrystalline, textured, or epitaxial films. Among them, the epitaxial films are a kind of single-crystal-like films grown with certain out-of-plane and in-plane orientations. Due to the highly ordered atomic arrangement in epitaxial films, they usually exhibit unique electric and magnetic properties. In this review, the common synthetic routes for the electrodeposition as well as the key experimental parameters that affect the epitaxial growth of the deposits are summarized. Besides, techniques used to characterize epitaxial films are briefly introduced. Furthermore, the electrodeposited functional epitaxial films with special electronic, electromagnetic, and photovoltaic properties are discussed.
Key words: electrodeposit; electroplating; thin film; highly oriented
[1] | Kang D, Kim T W, Kubota S R, Cardiel A C, Cha H G, Choi K S. Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting[J]. Chem. Rev., 2015, 115(23): 12839-12887. |
[2] | Switzer J A, Hodes G. Electrodeposition and chemical bath deposition of functional nanomaterials[J]. MRS Bull., 2010, 35(10): 743-752. |
[3] | Gusley R, Ezzat S, Coffey K R, West A C, Barmak K. Influence of the seed layer and electrolyte on the epitaxial electrodeposition of Co(0001) for the fabrication of single crystal interconnects[J]. J. Electrochem. Soc., 2020, 167(16): 162503. |
[4] | Choi K S, Jang H S, McShane C M, Read C G, Seabold J A. Electrochemical synthesis of inorganic polycrystalline ele-ctrodes with controlled architectures[J]. MRS Bull., 2010, 35(10): 753-760. |
[5] | Zhang Y H, An M Z, Yang P X, Zhang J Q. Recent advances in electroplating of through-hole copper interconnection[J]. Electrocatalysis, 2021, 12(6): 619-627. |
[6] | Gundel A, Devolder T, Chappert C, Schmidt J E, Cortes R, Allongue P. Electrodeposition of Fe/Au(111) ultrathin layers with perpendicular magnetic anisotropy[J]. Phys. B: Condens. Matter, 2004, 354(1-4): 282-285. |
[7] | Sorenson T A, Morton S A, Waddill G D, Switzer J A. Epitaxial electrodeposition of Fe3O4 thin films on the low-index planes of gold[J]. J. Am. Chem. Soc., 2002, 124(25): 7604-7609. |
[8] | He Z, Koza J A, Mu G J, Miller A S, Bohannan E W, Switzer J A. Electrodeposition of CoxFe3-xO4 epitaxial films and superlattices[J]. Chem. Mater., 2013, 25(2): 223-232. |
[9] | Koza J A, Hill J C, Demster A C, Switzer J A. Epitaxial electrodeposition of methylammonium lead Iodide perovskites[J]. Chem. Mater., 2016, 28(1): 399-405. |
[10] | Luo B, Banik A, Bohannan E W, Switzer J A. Epitaxial electrodeposition of hole transport CuSCN nanorods on Au(111) at the wafer scale and lift-off to produce flexible and transparent foils[J]. Chem. Mater., 2022, 34(3): 970-978. |
[11] | Yan Z H, Liu H H, Hao Z M, Yu M, Chen X, Chen J. Electrodeposition of (hydro)oxides for an oxygen evolution electrode[J]. Chem. Sci., 2020, 11(39): 10614-10625. |
[12] | Pu J, Shen Z H, Zhong C L, Zhou Q W, Liu J Y, Zhu J, Zhang H G. Electrodeposition technologies for Li-based batteries: New frontiers of energy storage[J]. Adv. Mater., 2019, 32(27): 1903808. |
[13] | Allongue P, Maroun F. Electrodeposited magnetic layers in the ultrathin limit[J]. MRS Bull., 2010, 35(10): 761-770. |
[14] | Hangarter C M, Liu Y, Pagonis D, Bertocci U, Moffat T P. Electrodeposition of ternary Pt100-x-yCoxNiy alloys[J]. J. Electrochem. Soc., 2014, 161(1): D31-D43. |
[15] | Herrick R D, Kaplan A S, Chinh B K, Shane M J, Sailor M J, Kavanagh K L, McCreey R L, Zhao J. Room-temperature electrosynthesis of carbonaceous fibers[J]. Adv. Mater., 1995, 7(4): 398-401. |
[16] | Mahenderkar N K, Liu Y C, Koza J A, Switzer J A. Electrodeposited germanium nanowires[J]. ACS Nano, 2014, 8(9): 9524-9530. |
[17] | Munisamy T, Bard A J. Electrodeposition of Si from organic solvents and studies related to initial stages of Si growth[J]. Electrochim. Acta, 2010, 55(11): 3797-3803. |
[18] | Kothari H M, Kulp E A, Limmer S J, Poizot P, Bohannan E W, Switzer J A. Electrochemical deposition and characterization of Fe3O4 films produced by the reduction of Fe(III)-triethanolamine[J]. J. Mater. Res., 2006, 21(1): 293-301. |
[19] | Koza J A, He Z, Miller A S, Switzer J A. Electrodeposition of crystalline Co3O4-A catalyst for the oxygen evolution reaction[J]. Chem. Mater., 2012, 24(18): 3567-3573. |
[20] | Koza J A, Schroen I P, Willmering M M, Switzer J A. Electrochemical synthesis and nonvolatile resistance switching of Mn3O4 thin films[J]. Chem. Mater., 2014, 26(15): 4425-4432. |
[21] | Kulp E A, Kothari H M, Limmer S J, Yang J B, Gudavarthy R V, Bohannan E W, Switzer J A. Electrodeposition of epitaxial magnetite films and ferrihydrite nanoribbons on single-crystal gold[J]. Chem. Mater., 2009, 21(21): 5022-5031. |
[22] | Hill J C, Koza J A, Switzer J A. Electrodeposition of epitaxial lead Iodide and conversion to textured methylammonium lead Iodide perovskite[J]. ACS Appl. Mater. Interfaces, 2015, 7(47): 26012-26016. |
[23] | Banik A, Bohannan E W, Switzer J A. Epitaxial electro-deposition of BiI3and topotactic conversion to highly ordered solar light-absorbing perovskite (CH3NH3)3Bi2I9[J]. Chem. Mater., 2020, 32(19): 8367-8372. |
[24] | Therese G H A, Kamath P V. Electrochemical synthesis of metal oxides and hydroxides[J]. Chem. Mater., 2000, 12(5): 1195-1204. |
[25] | Yan Z H, Sun H M, Chen X, Liu H H, Zhao Y R, Li H X, Xie W, Cheng F Y, Chen J. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution[J]. Nat. Commun., 2018, 9: 2373. |
[26] | Lv Y, Zhang Z A, Lai Y Q, Liu Y X. Electrodeposition of porous Mg(OH)2 thin films composed of single-crystal nanosheets[J]. J. Electrochem. Soc., 2012, 159(4): D187-D189. |
[27] | Aghazadeh M, Dalvand S, Hosseinifard M. Facile electrochemical synthesis of uniform β-Co(OH)2 nanoplates for high performance supercapacitors[J]. Ceram. Int., 2014, 40(2): 3485-3493. |
[28] | Kulp E A, Switzer J A. Electrochemical biomineralization: The deposition of calcite with chiral morphologies[J]. J. Am. Chem. Soc., 2007, 129(49): 15120-15121. |
[29] | Limmer S J, Kulp E A, Switzer J A. Epitaxial electrodeposition of ZnO on Au(111) from alkaline solution: Exploiting amphoterism in Zn(II)[J]. Langmuir, 2006, 22(25): 10535-10539. |
[30] | Poizot P, Hung C J, Nikiforov M P, Bohannan E W, Switzer J A. An electrochemical method for CuO thin film deposition from aqueous solution[J]. Electrochem. Solid-State Lett., 2003, 6(2): C21-C25. |
[31] | Han S, Liu S Q, Yin S J, Chen L, He Z. Electrodeposited Co-Doped Fe3O4 thin films as efficient catalysts for the oxygen evolution reaction[J]. Electrochim. Acta, 2016, 210: 942-949. |
[32] | Hssi A A, Atourki L, Abouabassi K, Elfanaoui A, Bouabid K, Ihall A, Benmokhtar S, Ouafi M. Growth and characterization of Cu2O for solar cells applications[M]. USA: Amer Inst Physics, 2018. |
[33] | Siegfried M J, Choi K S. Directing the architecture of cuprous oxide crystals during electrochemical growth[J]. Angew. Chem. Int. Ed., 2005, 44(21): 3218-3223. |
[34] | Li D J, Liu S Q, Ye G Y, Zhu W W, Zhao K M, Luo M, He Z. One-step electrodeposition of NixFe3-xO4/Ni hybrid nanosheet arrays as highly active and robust electrocatalysts for the oxygen evolution reaction[J]. Green Chem., 2020, 22(5): 1710-1719. |
[35] | Zhou S M. Electrodeposition of metals: Principles and methods[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1987. |
[36] | Tu Z M, An M Z, Hu H L. Modern alloy electrodeposition theory and technology[M]. Beijing: National Defense Industry Press, 2016. |
[37] | Paunovic M, Schlesinger M. Fundamentals of electrochemical deposition[M]. USA: John Wiley & Sons, Inc., 2006. |
[38] | Nikiforov M P, Vertegel A, Shumsky M G, Switzer J A. Epitaxial electrodeposition of Fe3O4 on single-crystal Au(111)[J]. Adv. Mater., 2000, 12(18): 1351-1353. |
[39] | Liu R, Vertegel A A, Bohannan E W, Sorenson T A, Switzer J A. Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold[J]. Chem. Mater., 2001, 13(2): 508-512. |
[40] | Bohannan E W, Shumsky M G, Switzer J A. Epitaxial electrodeposition of copper(I) oxide on single-crystal gold (100)[J]. Chem. Mater., 1999, 11(9): 2289-2291. |
[41] | Bohannan E W, Kothari H M, Nicic I M, Switzer J A. En-antiospecific electrodeposition of chiral CuO films on single-crystal Cu(111)[J]. J. Am. Chem. Soc., 2004, 126(2): 488-489. |
[42] | Liu R, Kulp E A, Oba F, Bohannan E W, Ernst F, Switzer J A. Epitaxial electrodeposition of high-aspect-ratio Cu2O(110) nanostructures on InP(111)[J]. Chem. Mater., 2005, 17(4): 725-729. |
[43] | Lincot D, Kampmann A, Mokili B, Vedel J, Cortes R, Froment M. Epitaxial electrodeposition of CdTe films on InP from aqueous solutions: role of a chemically deposited CdS intermediate layer[J]. Appl. Phys. Lett., 1995, 67(16): 2355-2357. |
[44] | Switzer J A, Hill J C, Mahenderkar N K, Liu Y C. Nano-meter-thick gold on silicon as a proxy for single-crystal gold for the electrodeposition of epitaxial cuprous oxide thin films[J]. ACS Appl. Mater. Interfaces, 2016, 8(24): 15828-15837. |
[45] | Mahenderkar N K, Chen Q Z, Liu Y C, Duchild A R, Hofheins S, Chason E, Switzer J A. Epitaxial lift-off of electrodeposited single-crystal gold foils for flexible electronics[J]. Science, 2017, 355(6330): 1203-1206. |
[46] | Hull C M, Switzer J A. Electrodeposited epitaxial Cu(100) on Si(100) and lift-off of single crystal-like Cu(100) foils[J]. ACS Appl. Mater. Interfaces, 2018, 10(44): 38596-38602. |
[47] | Luo B, Banik A, Bohannan E W, Switzer J A. Epitaxial electrodeposition of Cu(111) onto an L-cysteine self-assembled monolayer on Au(111) and epitaxial lift-off of single-crystal-like Cu foils for flexible electronics[J]. J. Phys. Chem. C, 2020, 124(39): 21426-21434. |
[48] | Chen Q Z, Switzer J A. Electrodeposition of nanometer-thick epitaxial films of silver onto single-crystal silicon wafers[J]. J. Mater. Chem. C, 2019, 7(6): 1720-1725. |
[49] | Switzer J A, Liu R, Bohannan E W, Ernst F. Epitaxial electrodeposition of a crystalline metal oxide onto single-crystalline silicon[J]. J. Phys. Chem. B, 2002, 106(48): 12369-12372. |
[50] | Switzer J A, Kothari H M, Bohannan E W. Thermodynamic to kinetic transition in epitaxial electrodeposition[J]. J. Phys. Chem. B, 2002, 106(16): 4027-4031. |
[51] | Nakanishi S, Lu G T, Kothari H M, Bohannan E W, Switzer J A. Epitaxial electrodeposition of Prussian blue thin films on single-crystal Au(110)[J]. J. Am. Chem. Soc., 2003, 125(49): 14998-14999. |
[52] | Gudavarthy R V, Gorantla S, Mu G J, Kulp E A, Gemming T, Eckert J, Switzer J A. Epitaxial electrodeposition of Fe3O4 on single-crystal Ni(111)[J]. Chem. Mater., 2011, 23(8): 2017-2019. |
[53] | Kelso M V, Tubbesing J Z, Chen Q Z, Switzer J A. Epitaxial electrodeposition of chiral metal surfaces on silicon(643)[J]. J. Am. Chem. Soc., 2018, 140(46): 15812-15819. |
[54] | Vertegel A A, Bohannan E W, Shumsky M G, Switzer J A. Epitaxial electrodeposition of orthorhombic α-PbO2 on (100)-oriented single crystal Au[J]. J. Electrochem. Soc., 2001, 148(4): C253-C256. |
[55] | Cheng S Y, Chen G A, Chen Y Q, Huang C C. Effect of deposition potential and bath temperature on the electro-deposition of SnS film[J]. Opt. Mater., 2006, 29(4): 439-444. |
[56] | Govindaraju G V, Wheeler G P, Lee D, Choi K S. Methods for electrochemical synthesis and photoelectrochemical characterization for photoelectrodes[J]. Chem. Mater., 2017, 29(1): 355-370. |
[57] | Leistner K, Duschek K, Zehner J, Yang M Z, Petr A, Nielsch K, Kavanagh K L. Role of hydrogen evolution during epitaxial electrodeposition of Fe on GaAs[J]. J. Ele-ctrochem. Soc., 2018, 165(4): H3076-H3079. |
[58] | Gusley R, Sentosun K, Ezzat S, Coffey K R, West A C, Barmak K. Electrodeposition of epitaxial Co on Ru(0001)/Al2O3(0001)[J]. J. Electrochem. Soc., 2019, 166(15): D875-D881. |
[59] | Gabe D R. The role of hydrogen in metal electrodeposition processes[J]. J. Appl. Electrochem., 1997, 27(8): 908-915. |
[60] | Liu R, Bohannan E W, Switzer J A, Oba F, Ernst F. Epitaxial electrodeposition of Cu2O films onto InP(001)[J]. Appl. Phys. Lett., 2003, 83(10): 1944-1946. |
[61] | Liu R, Oba F, Bohannan E W, Ernst F, Switzer J A. Shape control in epitaxial electrodeposition: Cu2O nano-cubes on InP(001)[J]. Chem. Mater., 2003, 15(26): 4882-4885. |
[62] | Hainey M, Robin Y, Amano H, Usami N. Pole figure analysis from electron backscatter diffraction-an effective method of evaluating fiber-textured silicon thin films as seed layers for epitaxy[J]. Appl. Phys. Express, 2019, 12(2): 025501. |
[63] | Wei Y M, Fu Y C, Yan J W, Sun C F, Shi Z, Xie Z X, Wu D Y, Mao B W. Growth and shape-ordering of iron nanostructures on Au single crystalline electrodes in an ionic liquid: A paradigm of magnetostatic coupling[J]. J. Am. Chem. Soc., 2010, 132(23): 8152-8157. |
[64] | Fu Y C, Yan J W, Wang Y, Tian J H, Zhang H M, Xie Z X, Mao B W. In situ STM studies on the underpotential deposition of antimony on Au(111) and Au(100) in a BMIBF4 ionic liquid[J]. J. Phys. Chem. C, 2007, 111(28): 10467-10477. |
[65] | Lin L G, Yan J W, Wang Y, Fu Y C, Mao B W. An in situ STM study of cobalt electrodeposition on Au(111) in BMIBF4 ionic liquid[J]. J. Exp. Nanosci., 2006, 1(3): 269-278. |
[66] | Deng B, Pang Z Q, Chen S L, Li X, Meng C X, Li J Y, Liu M X, Wu J X, Qi Y, Dang W H, Yang H, Zhang Y F, Zhang J, Kang N, Xu H Q, Fu Q, Qiu X H, Gao P, Wei Y J, Liu Z F, Peng H L. Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates[J]. ACS Nano, 2017, 11(12): 12337-12345. |
[67] | Geiss R H, Read D T, Seiler D G, Diebold A C, McDonald R, Garner C M, Herr D, Khosla R P, Secula E M. Need for standardization of EBSD measurements for microstructural characterization of thin film structures[M]. USA: AMER INST PHYSICS, 2007. |
[68] | Cachet H, Cortes R, Froment M, Maurin G. Epitaxial electrodeposition of cadmium selenide thin films on indium phosphide single crystal[J]. J. Solid State Electrochem., 1997, 1(1): 100-107. |
[69] | Munford M L, Cortes R, Allongue P. The preparation of ideally ordered flat H-Si(111) surfaces[J]. Sens. Mater., 2001, 13(5): 259-269. |
[70] | Munford M L, Maroun F, Cortes R, Allongue P, Pasa A A. Electrochemical growth of gold on well-defined vicinal H-Si(111) surfaces studied by AFM and XRD[J]. Surf. Sci., 2003, 537(1-3): 95-112. |
[71] | Prod′homme P, Maroun F, Cortes R, Allongue P. Electrochemical growth of ultraflat Au(111) epitaxial buffer layers on H-Si(111)[J]. Appl. Phys. Lett., 2008, 93(17): 171901. |
[72] | Warren S, Prod′homme P, Maroun F, Allongue P, Cortes R, Ferrero C, Lee T L, Cowie B C C, Walker C J, Ferrer S, Zegenhagen J. Electrochemical Au deposition on stepped Si(111)-H surfaces: 3D versus 2D growth studied by AFM and X-ray diffraction[J]. Surf. Sci., 2009, 603(9): 1212-1220. |
[73] | Prodhomme P, Warren S, Cortes R, Jurca H F, Maroun F, Allongue P. Epitaxial growth of gold on H-Si(111): The determining role of hydrogen evolution[J]. Chem. Phys. Chem., 2010, 11(13): 2992-3001. |
[74] | Akhtari-Zavareh A, Li W J, Maroun F, Allongue P, Kavanagh K L. Improved chemical and electrical stability of gold silicon contacts via epitaxial electrodeposition[J]. J. Appl. Phys., 2013, 113(6): 063708. |
[75] | Zambelli T, Munford M L, Pillier F, Bernard M C, Allongue P. Cu electroplating on H-terminated n-Si(111)-properties and structure of n-Si/Cu junctions[J]. J. Electrochem. Soc., 2001, 148(9): C614-C619. |
[76] | Xin X, Ito K, Dutta A, Kubo Y. Dendrite-free epitaxial growth of lithium metal during charging in Li-O2 batteries[J]. Angew. Chem. Int. Ed., 2018, 57(40): 13206-13210. |
[77] | Zheng J X, Zhao Q, Tang T, Yin J F, Quilty C D, Renderos G D, Liu X T, Deng Y, Wang L, Bock D C, Jaye C, Zhang D H, Takeuchi E S, Takeuchi K J, Marschilok A C, Archer L A. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science, 2019, 366(6465): 645-648. |
[78] | Zhang K, Yan Z H, Chen J. Electrodeposition accelerates metal-based batteries[J]. Joule, 2020, 4(1): 10-11. |
[79] | Chappert C, Fert A, Van Dau F N. The emergence of spin electronics in data storage[J]. Nat. Mater., 2007, 6(11): 813-823. |
[80] | Gundel A, Cagnon L, Gomes C, Morrone A, Schmidt J, Allongue P. In-situ magnetic measurements of electrodeposited ultrathin Co, Ni and Fe/Au(111) layers[J]. Phys. Chem. Chem. Phys., 2001, 3(16): 3330-3335. |
[81] | Di N, Damian A, Maroun F, Allongue P. Influence of potential on the electrodeposition of Co on Au(111) by in situ STM and reflectivity measurements[J]. J. Electro-chem. Soc., 2016, 163(12): D3062-D3068. |
[82] | Cagnon L, Gundel A, Devolder T, Morrone A, Chappert C, Schmidt J E, Allongue P. Anion effect in Co/Au(111) electrodeposition: Structure and magnetic behavior[J]. Appl. Surf. Sci., 2000, 164: 22-28. |
[83] | Jurca H F, Damian A, Gougaud C, Thiaudiere D, Cortes R, Maroun F, Allongue P. Epitaxial electrodeposition of Fe on Au(111): Structure, nucleation, and growth mechanisms[J]. J. Phys. Chem. C, 2016, 120(29): 16080-16089. |
[84] | Borges J G, Prod′homme P, Maroun F, Cortes R, Geshev J, Schmidt J E, Allongue P. Perpendicular anisotropy in electrodeposited Au/Co films[J]. Phys. B: Condensed Matter, 2006, 384(1-2): 138-140. |
[85] | He Z, Gudavarthy R V, Koza J A, Switzer J A. Room-temperature electrochemical reduction of epitaxial magnetite films to epitaxial iron films[J]. J. Am. Chem. Soc., 2011, 133(32): 12358-12361. |
[86] | He Z, Koza J A, Liu Y C, Chen Q Z, Switzer J A. Room-temperature electrochemical reduction of epitaxial Bi2O3 films to epitaxial Bi films[J]. RSC Adv., 2016, 6(99): 96832-96836. |
[87] | Chen L C, Dong J W, Schultz B D, Palmstrom C J, Berezovsky J, Isakovic A, Crowell P A, Tabat N. Epitaxial ferromagnetic metal/GaAs(100) heterostructures[J]. J. Vac. Sci. Technol. B, 2000, 18(4): 2057-2062. |
[88] | Bao Z L, Kavanagh K L. Epitaxial Fe/GaAs via electrochemistry[J]. J. Appl. Phys., 2005, 98(6): 066103. |
[89] | Norton D P. Synthesis and properties of epitaxial electronic oxide thin-film materials[J]. Mater. Sci. Eng. R Rep., 2004, 43(5-6): 139-247. |
[90] | Pauporte T, Lincot D. Heteroepitaxial electrodeposition of zinc oxide films on gallium nitride[J]. Appl. Phys. Lett., 1999, 75(24): 3817-3819. |
[91] | Pauporte T, Lincot D. Electrodeposition of semiconductors for optoelectronic devices: results on zinc oxide[J]. Electrochim. Acta, 2000, 45(20): 3345-3353. |
[92] | Richardson T J, Slack J L, Rubin M D. Electrochromism in copper oxide thin films[J]. Electrochim. Acta, 2001, 46 (13-14): 2281-2284. |
[93] | Switzer J A, Kothari H M, Poizot P, Nakanishi S, Bohannan E W. Enantiospecific electrodeposition of a chiral catalyst[J]. Nature, 2003, 425(6957): 490-493. |
[94] | Bohannan E W, Nicic I M, Kothari H A, Switzer J A. Enantiospecific electrodeposition of chiral CuO films on Cu(110) from aqueous Cu(II) tartrate and amino acid complexes[J]. Electrochim. Acta, 2007, 53(1): 155-160. |
[95] | Kothari H M, Kulp E A, Boonsalee S, Nikiforov M P, Bohannan E W, Poizot P, Nakanishi S, Switzer J A. Enantiospecific electrodeposition of chiral CuO Films from copper(II) complexes of tartaric and amino acids on single-crystal Au(001)[J]. Chem. Mater., 2004, 16(22): 4232-4244. |
[96] | Gudavarthy R V, Burla N, Kulp E A, Limmer S J, Sinn E, Switzer J A. Epitaxial electrodeposition of chiral CuO films from copper(II) complexes of malic acid on Cu(111) and Cu(110) single crystals[J]. J. Mater. Chem., 2011, 21(17): 6209-6216. |
[97] | Brandt I S, Tumelero M A, Pelegrini S, Zangari G, Pasa A A. Electrodeposition of Cu2O: Growth, properties, and applications[J]. J. Solid State Electrochem., 2017, 21(7): 1999-2020. |
[98] | Oba F, Ernst F, Yu Y S, Liu R, Kothari M, Switzer J A. Epitaxial growth of cuprous oxide electrodeposited onto semiconductor and metal substrates[J]. J. Am. Ceram. Soc., 2005, 88(2): 253-270. |
[99] | Wee S H, Huang P S, Lee J K, Goyal A. Heteroepitaxial Cu2O thin film solar cell on metallic substrates[J]. Sci. Rep., 2015, 5: 16272. |
[100] | Switzer J A, Gudavarthy R V, Kulp E A, Mu G J, He Z, Wessel A J. Resistance switching in electrodeposited magnetite superlattices[J]. J. Am. Chem. Soc., 2010, 132(4): 1258-1260. |
[101] | Grunberg P A. Nobel Lecture: From spin waves to giant magnetoresistance and beyond[J]. Rev. Mod. Phys., 2008, 80(4): 1531-1540. |
[102] | Switzer J A, Shane M J, Phillips R J. Electrodeposited ceramic superlattices[J]. Science, 1990, 247(4941): 444-446. |
[103] | Spanger B, Schiessl U, Lambrecht A, Böttner H, Tacke M. Near-room-temperature operation of Pb1-xSrxSe infrared diode lasers using molecular beam epitaxy growth techniques[J]. Appl. Phys. Lett., 1988, 53(26): 2582-2583. |
[104] | Johnson T H. Lead salt detectors and arrays: PbS and PbSe[J]. P. Soc. Photo-Opt. Inst., 1984(443): 60-94. |
[105] | Vertegel A A, Shumsky M G, Switzer J A. Epitaxial electrodeposition of lead sulfide on (100)-oriented single-crystal gold[J]. Angew. Chem. Int. Ed., 1999, 38(21): 3169-3171. |
[106] | Beaunier L, Cachet H, Froment M. Epitaxial electrodeposition of lead selenide films on indium phosphide single crystals[J]. Mater. Sci. Semicond. Process., 2001, 4(5): 433-436. |
[107] | Beaunier L, Cachet H, Cortes R, Froment M. Epitaxial electrodeposition of lead telluride films on indium phosphide single crystals[J]. J. Electroanal. Chem., 2002, 532(1-2): 215-218. |
[108] | Boonsalee S, Gudavarthy R V, Bohannan E W, Switzer J A. Epitaxial electrodeposition of tin(II) sulfide nano-disks on single-crystal Au(100)[J]. Chem. Mater., 2008, 20(18): 5737-5742. |
[109] | Brownson J R S, Georges C, Larramona G, Jacob A, De-latouche B, Lévy-Clément C. Chemistry of tin monosulfide (δ-SnS) electrodeposition: Effects of pH and temperature with tartaric acid[J]. J. Electrochem. Soc., 2008, 155(1): D40-D46. |
[110] | Shi D, Adinolfi V, Comin R, Yuan M J, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519-522. |
[111] | Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L, Huang J S. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967-970. |
[112] | Banik A, Tubbesing J Z, Luo B, Zhang X T, Switzer J A. Epitaxial electrodeposition of optically transparent hole-conducting CuI on n-Si(111)[J]. Chem. Mater., 2021, 33(9): 3220-3227. |
[113] | Wijeyasinghe N, Eisner F, Tsetseris L, Lin Y H, Seitkhan A, Li J H, Yan F, Solomeshch O, Tessler N, Patsalas P, Anthopoulos T D. p-Doping of copper(I) thiocyanate (CuSCN) hole-transport layers for high-performance transistors and organic solar cells[J]. Adv. Funct. Mater., 2018, 28(31): 1802055. |
/
〈 |
|
〉 |