欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

氮掺杂石墨毡对水系醌基氧化还原液流电池性能的影响

  • 张衡 ,
  • 夏力行 ,
  • 姜珊 ,
  • 王福芝 ,
  • 谭占鳌
展开
  • 1.华北电力大学新能源电力系统国家重点实验室,北京 102206
    2.北京化工大学北京软物质科学与工程高精尖创新中心,北京 100029

收稿日期: 2022-03-23

  修回日期: 2022-05-04

  录用日期: 2022-05-05

  网络出版日期: 2022-05-09

基金资助

国家自然科学基金项目(51873007)

Nitrogen-Doped Graphite Felt on the Performance of Aqueous Quinone-Based Redox Flow Batteries

  • Heng Zhang ,
  • Li-Xing Xia ,
  • Shan Jiang ,
  • Fu-Zhi Wang ,
  • Zhan-Ao Tan
Expand
  • 1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
    2. Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Received date: 2022-03-23

  Revised date: 2022-05-04

  Accepted date: 2022-05-05

  Online published: 2022-05-09

摘要

电极的性能是实现水系醌基氧化还原液流电池(AQRFBs)高能量效率的关键。本文采用尿素水热反应对石墨毡(GF)进行改性,同时研究了水热反应时间对氮掺杂石墨毡表面官能团和结构的影响。利用扫描电子显微镜(SEM)、比表面积及孔隙度分析仪(BET)、拉曼光谱(Raman)和X射线光电子能谱(XPS)对改性电极的表面形貌、比表面积、碳缺陷、元素含量和表面官能团进行了表征。然后,通过循环伏安法、电化学阻抗谱和单电池循环对改性电极的电化学性能进行了研究。结果表明,氮掺杂提高了石墨毡的比表面积、亲水性和电导率。氮掺杂石墨毡(NGFs)具有优异的电化学催化活性和较低的电荷转移电阻。与GF相比,在100 mA·cm-2时,电池负极使用NGF-6电极后,醌基氧化还原液流电池的能量效率提高了8.0%。

本文引用格式

张衡 , 夏力行 , 姜珊 , 王福芝 , 谭占鳌 . 氮掺杂石墨毡对水系醌基氧化还原液流电池性能的影响[J]. 电化学, 2023 , 29(12) : 2203231 . DOI: 10.13208/j.electrochem.2203231

Abstract

Modification of electrode is vitally important for achieving high energy efficiency in aqueous quinone-based redox flow batteries (AQRFBs). The modification of graphite felt (GF) was carried out by means of urea hydrothermal reaction, and simultaneously, the effects of hydrothermal reaction time on the functional groups and surface structure of nitrogen-doped graphite felt were studied. The surface morphology and defect, element content and surface chemical state of the modified electrode were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) test, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The electrochemical performance of the modified electrodes was evaluated by cyclic voltammetry, electrochemical impedance spectroscopy and single cell test. These results indicate that the specific surface area, hydrophilicity and conductivity of GF have been improved by nitrogen doping. The nitrogen-doped graphite felt (NGF) demonstrates an outstanding electrochemical catalytic activity and less charge transfer resistance. With the NGF, the battery exhibited 8.0% increase in the energy efficiency of aqueous quinone redox flow batteries at 100 mA·cm-2.

参考文献

[1] Yang Z G, Zhang J L, Kintner-Meyer M C W, Lu X C, Choi D W, Lemmon J P, Liu J. Electrochemical energy storage for green grid[J]. Chem. Rev., 2011, 111(5): 3577-3613.
[2] Soloveichik G L. Flow batteries: Current status and trends[J]. Chem. Rev., 2015, 115(20): 11533-11558.
[3] Xia L X, Liu H, Liu L, Tan Z A. Recent progress in organic redox flow batteries[J]. J. Electrochem., 2018, 24(5): 466-487.
[4] Huskinson B, Marshak M P, Suh C, Er S, Gerhardt M R, Galvin C J, Chen X, Aspuru-Guzik A, Gordon R G, Aziz M J. A metal-free organic-inorganic aqueous flow battery[J]. Nature, 2014, 505(7482): 195-198.
[5] Lin K, Chen Q, Gerhardt M R, Tong L, Kim S B, Eisenach L, Valle A W, Hardee D, Gordon R G, Aziz M J, Marshak M P. Alkaline quinone flow battery[J]. Science, 2015, 349(6255): 1529-1532.
[6] Kwabi D G, Lin K X, Ji Y L, Kerr E F, Goulet M A, De Porcellinis D, Tabor D P, Pollack D A, Aspuru-Guzik A, Gordon R G, Aziz M J. Alkaline quinone flow battery with long lifetime at pH 12[J]. Joule, 2018, 2(9): 1894-1906.
[7] Ji Y L, Goulet M A, Pollack D A, Kwabi D G, Jin S Y, De Porcellinis D, Kerr E F, Gordon R G, Aziz M J. A phosphonate-functionalized quinone redox flow battery at near-neutral pH with record capacity retention rate[J]. Adv. Energy Mater., 2019, 9(12): 1900039.
[8] Wedege K, Drazevic E, Konya D, Bentien A. Organic redox species in aqueous flow batteries: Redox potentials, chemical stability and solubility[J]. Sci Rep, 2016, 6(1): 1-13.
[9] Xia L X, Huo W B, Gao H Z, Zhang H, Chu F M, Liu H, Tan Z A. Intramolecular hydrogen bonds induced high solubility for efficient and stable anthraquinone based neutral aqueous organic redox flow batteries[J]. J. Power Sources, 2021, 498: 229896.
[10] Zhong S, Skyllas-Kazacos M. Electrochemical behaviour of vanadium(V)/vanadium(IV) redox couple at graphite electrodes[J]. J. Power Sources, 1992, 39(1): 1-9.
[11] He Z X, Jiang Y Q, Li Y H, Zhu J, Zhou H Z, Meng W, Wang L, Dai L. Carbon layer-exfoliated, wettability-enhanced, SO3H-functionalized carbon paper: A superior positive electrode for vanadium redox flow battery[J]. Carbon, 2018, 127: 297-304.
[12] Yue L, Li W S, Sun F Q, Zhao L Z, Xing L D. Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery[J]. Carbon, 2010, 48(11): 3079-3090.
[13] Jiang H R, Sun J, Wei L, Wu M C, Shyy W, Zhao T S. A high power density and long cycle life vanadium redox flow battery[J]. Energy Storage Mater., 2020, 24: 529-540.
[14] Sun B, Skyllas-Kazacos M. Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment[J]. Electrochim. Acta, 1992, 37(7): 1253-1260.
[15] Wang R, Li Y S, He Y L. Achieving gradient-pore-oriented graphite felt for vanadium redox flow batteries: meeting improved electrochemical activity and enhanced mass transport from nano-to micro-scale[J]. J. Mater. Chem. A, 2019, 7(18): 10962-10970.
[16] Jiang H R, Shyy W, Wu M C, Zhang R H, Zhao T S. A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries[J]. Appl. Energy, 2019, 233-234: 105-113.
[17] Abbas S, Mehboob S, Shin H J, Han O H, Ha H Y. Highly functionalized nanoporous thin carbon paper electrodes for high energy density of zero-gap vanadium redox flow battery[J]. Chem. Eng. J., 2019, 378: 122190.
[18] Zhou X, Zhang X, Lv Y, Lin L, Wu Q. Nano-catalytic layer engraved carbon felt via copper oxide etching for vanadium redox flow batteries[J]. Carbon, 2019, 153: 674-681.
[19] Jiang H R, Shyy W, Zeng L, Zhang R H, Zhao T S. Highly efficient and ultra-stable boron-doped graphite felt electrodes for vanadium redox flow batteries[J]. J. Mater. Chem. A, 2018, 6(27): 13244-13253.
[20] Xu Z Y, Zhu M D, Zhang K Y, Zhang X H, Xu L X, Liu J G, Liu T, Yan C A W. Inspired by “quenching-cracking” strategy: Structure-based design of sulfur-doped graphite felts for ultrahigh-rate vanadium redox flow batteries[J]. Energy Storage Mater., 2021, 39: 166-175.
[21] He Z Q, Zhou X J, Zhang Y, Jiang F J, Yu Q C. Low-temperature nitrogen-doping of graphite felt electrode for vanadium redox flow batteries[J]. J. Electrochem. Soc., 2019, 166(12): A2336-A2340.
[22] Wang R, Li Y S, Wang Y N, Fang Z. Phosphorus-doped graphite felt allowing stabilized electrochemical interface and hierarchical pore structure for redox flow battery[J]. Appl. Energy, 2020, 261: 114369.
[23] Li B, Gu M, Nie Z M, Shao Y Y, Luo Q T, Wei X L, Li X L, Xiao J, Wang C M, Sprenkle V, Wang W. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery[J]. Nano Lett., 2013, 13(3): 1330-1335.
[24] Wei L, Zhao T S, Zeng L, Zhou X L, Zeng Y K. Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries[J]. Appl. Energy, 2016, 180: 386-391.
[25] Jiang Y Q, Feng X J, Cheng G, Li Y H, Li C C, He Z X, Zhu J, Meng W, Zhou H Z, Dai L, Wang L. Electrocatalytic activity of MnO2 nanosheet array-decorated carbon paper as superior negative electrode for vanadium redox flow batteries[J]. Electrochim. Acta, 2019, 322: 134754.
[26] Yun N, Park J J, Park O O, Lee K B, Yang J H. Electrocatalytic effect of NiO nanoparticles evenly distributed on a graphite felt electrode for vanadium redox flow batteries[J]. Electrochim. Acta, 2018, 278: 226-235.
[27] Hou B X, Cui X M, Chen Y G. In situ TiO2 decorated carbon paper as negative electrode for vanadium redox battery[J]. Solid State Ion., 2018, 325: 148-156.
[28] Xie X, Xiang Y, Daoud W A. MoO3-deposited graphite felt for high-performance vanadium redox flow batteries[J]. ACS Appl. Energ. Mater., 2020, 3(11): 10463-10476.
[29] Opar D O, Nankya R, Lee J, Jung H. Assessment of three-dimensional nitrogen-doped mesoporous graphene functionalized carbon felt electrodes for high-performance all vanadium redox flow batteries[J]. Appl. Surf. Sci., 2020, 531: 147391.
[30] Zhang X Y, Wu Q X, Lv Y H, Li Y L, Zhou X L. Binder-free carbon nano-network wrapped carbon felt with optimized heteroatom doping for vanadium redox flow batteries[J]. J. Mater. Chem. A, 2019, 7(43): 25132-25141.
[31] Jiang F J, He Z Q, Guo D Y, Zhou X J. Carbon aerogel modified graphite felt as advanced electrodes for vanadium redox flow batteries[J]. J. Power Sources, 2019, 440: 227114.
[32] Daugherty M C, Gu S, Aaron D S, Chandra Mallick B, Gandomi Y A, Hsieh C T. Decorating sulfur and nitrogen co-doped graphene quantum dots on graphite felt as high-performance electrodes for vanadium redox flow batteries[J]. J. Power Sources, 2020, 477: 228709.
[33] Daugherty M C, Gu S, Aaron D S, Kelly R E, Ashraf Gandomi Y, Hsieh C T. Graphene quantum dot-decorated carbon electrodes for energy storage in vanadium redox flow batteries[J]. Nanoscale, 2020, 12(14): 7834-7842.
[34] Sedenho G C, De Porcellinis D, Jing Y, Kerr E, Mejia-Mendoza L M, Vazquez-Mayagoitia A, Aspuru-Guzik A, Gordon R G, Crespilho F N, Aziz M J. Effect of molecular structure of quinones and carbon electrode surfaces on the interfacial electron transfer process[J]. ACS Appl. Energ. Mater., 2020, 3(2): 1933-1943.
[35] Permatasari A, Shin J W, Lee W, An J, Kwon Y. The effect of plasma treated carbon felt on the performance of aqueous quinone-based redox flow batteries[J]. Int. J. Energ. Res., 2021, 45(12): 17878-17887.
[36] Gao F F, Li X Y, Zhang Y, Huang C D, Zhang W. Electrocatalytic activity of modified graphite felt in five anthraquinone derivative solutions for redox flow batteries[J]. ACS Omega, 2019, 4(9): 13721-13732.
[37] Gao F F, Cai X H, Huang C D. The impact of modified electrode on the performance of an DHAQ/ K4Fe(CN)6 redox flow battery[J]. Electrochim. Acta, 2021, 390: 138847.
[38] Wang H B, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications[J]. ACS Catal., 2012, 2(5): 781-794.
[39] Zhang L P, Niu J B, Dai L, Xia Z H. Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells[J]. Langmuir, 2012, 28(19): 7542-7550.
[40] Deng S Y, Jian G Q, Lei J P, Hu Z, Ju H X. A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes[J]. Biosens. Bioelectron., 2009, 25(2): 373-377.
[41] Shao Y Y, Wang X Q, Engelhard M, Wang C M, Dai S, Liu J, Yang Z G, Lin Y H. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries[J]. J. Power Sources, 2010, 195(13): 4375-4379.
[42] Chen H, Liang X, Liu Y P, Ai X, Asefa T, Zou X X. Active site engineering in porous electrocatalysts[J]. Adv. Mater., 2020, 32(44): 2002435.
[43] Liu T, Li X F, Nie H J, Xu C, Zhang H M. Investigation on the effect of catalyst on the electrochemical performance of carbon felt and graphite felt for vanadium flow batteries[J]. J. Power Sources, 2015, 286: 73-81.
[44] Ding Z J, Zhao L, Suo L M, Jiao Y, Meng S, Hu Y S, Wang Z X, Chen L Q. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study[J]. Phys. Chem. Chem. Phys., 2011, 13(33): 15127-15133.
[45] He Z X, Chen Z S, Meng W, Jiang Y Q, Cheng G, Dai L, Wang L. Modified carbon cloth as positive electrode with high electrochemical performance for vanadium redox flow batteries[J]. J. Energy Chem., 2016, 25(4): 720-725.
文章导航

/