欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

基于非亲核电解液构建稳定的镁离子电池

  • 谢茂玲 ,
  • 王钧 ,
  • 胡晨吉 ,
  • 郑磊 ,
  • 孔华彬 ,
  • 沈炎宾 ,
  • 陈宏伟 ,
  • 陈立桅
展开
  • 1.华侨大学材料科学与工程学院,福建 厦门 361021
    2.上海交通大学,物质科学原位中心,化学化工学院,上海 200240
    3.中国科学院苏州纳米技术与纳米仿生研究所i-Lab,江苏 苏州 215123

收稿日期: 2021-12-28

  修回日期: 2022-01-20

  网络出版日期: 2022-03-22

版权

《电化学》编辑部, 2022, 版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

An Additive Incorporated Non-Nucleophilic Electrolyte for Stable Magnesium Ion Batteries

  • Mao-Ling Xie ,
  • Jun Wang ,
  • Chen-Ji Hu ,
  • Lei Zheng ,
  • Hua-Bin Kong ,
  • Yan-Bin Shen ,
  • Hong-Wei Chen ,
  • Li-Wei Chen
Expand
  • 1. College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, Fujian, China
    2. In-Situ Center for Physical Science, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
    3. i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou 215123, Jiangsu, China
First author contact:

# Xie M L and Wang J contributed equally to this work.

*Hong-Wei Chen: Tel: (86-592)6162251, E-mail: hwchen@hqu.edu.cn,
Li-Wei Chen: Tel: (86-21)54743179, E-mail: lwchen2018@sjtu.edu.cn

Received date: 2021-12-28

  Revised date: 2022-01-20

  Online published: 2022-03-22

Copyright

, 2022, Copyright reserved © 2022

摘要

非亲核电解液被认为是新一代可用于镁离子电池的高稳定电解液。但由于电解液容易在镁金属表面产生不传导镁离子的钝化层,导致镁的电化学沉积/溶出过程在该电解液中表现出动力学缓慢、库仑效率较低等缺点。在本研究中,我们通过在非亲核电解液中引入二苯二硫醚(PDF)添加剂以实现对镁金属电极的界面调控。研究表明PDF产生的苯基硫醇盐中间体可以紧密结合在镁金属表面,并显著抑制了镁金属表面钝化层的生成。经界面优化后的镁金属电极的沉积-溶出库仑效率高达99.5%,并且表现出显著降低的过电位。利用此电解液,并以镁金属为负极、Mo6S7Se为正极构建的镁离子电池在室温下可稳定循环150周(0.1 C)。这类通过添加剂优化镁金属界面的策略也将有助于推进其他类型的镁离子电解液的实际应用。

本文引用格式

谢茂玲 , 王钧 , 胡晨吉 , 郑磊 , 孔华彬 , 沈炎宾 , 陈宏伟 , 陈立桅 . 基于非亲核电解液构建稳定的镁离子电池[J]. 电化学, 2022 , 28(3) : 2108561 . DOI: 10.13208/j.electrochem.210856

Abstract

Non-nucleophilic electrolytes are promising next-generation highly stable electrolytes for magnesium-ion batteries (MIBs). However, a passivation layer on Mg metal anode usually blocks Mg2+ diffusion, leading to poor reaction kinetics and low Coulombic efficiency of the Mg plating/stripping in these electrolytes. Here we explore the utilization of phenyl disulfide (PDF) as a film-forming additive for non-nucleophilic electrolytes to regulate the interfacial chemistry on Mg metal anode. Phenyl-thiolate generated from the PDF additive was found to suppress the unfavorable surface blocking layer, resulted in a high Coulombic efficiency of up to 99.5% for the Mg plating/stripping process as well as a remarkably decreased overpotential. The full battery consisting of Mg metal anode and Mo6S7Se cathode remained stable in the PDF additive-containing electrolyte at 0.1 C over 150 cycles at room temperature.

参考文献

[1] Goodenough J, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22(3):587-603.
[2] Li M, Lu J, Chen Z W, Amine K. 30 years of lithium-ion batteries[J]. Adv. Mater., 2018, 30(33):1-24.
[3] Dusastre V. Materials for sustainable energy: A Collection of peer-reviewed research and review articles from nature publishing group[M]. World Scientific, 2010.
[4] Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E. Prototype systems for rechargeable magnesium batteries[J]. Nature, 2000, 407:724-727.
[5] Niu J, Zhang Z, Aurbach D. Alloy anode materials for rechargeable Mg ion batteries[J]. Adv. Energy Mater., 2020, 10(23):1-33.
[6] Choi J, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nat. Rev. Mater., 2016, 1(4):1-16.
[7] Aurbach D, Gofer Y, Lu Z, Schechter A, Chusid O, Gizbar H, Cohen Y, Ashkenazi V, Moshkovich M, Turgeman R. A short review on the comparison between Li battery systems and rechargeable magnesium battery technology[J]. J. Power Sources, 2001, 97-98:28-32.
[8] Attias R, Salama M, Hirsch B, Goffer Y, Aurbach D. Anode-electrolyte interfaces in secondary magnesium batteries[J]. Joule, 2019, 3(1):27-52.
[9] Mohtadi R, Mizuno F. Magnesium batteries: Current state of the art, issues and future perspectives[J]. Beilstein J. Nanotechnol., 2014, 5(1):1291-1311.
[10] Deivanayagam R, Ingram B, Shahbazian-Yassar R. Progress in development of electrolytes for magnesium batteries[J]. Energy Storage Mater., 2019, 21:136-153.
[11] Muldoon J, Bucur C B, Oliver A G, Sugimoto T, Matsui M, Kim H S, Allred G D, Zajicek J, Kotani Y. Electrolyte roadblocks to a magnesium rechargeable battery[J]. Energy Environ. Sci., 2012, 5(3):5941-5950.
[12] Shi J, Zhang J, Guo J, Lu J. Interfaces in rechargeable magnesium batteries[J]. Nanoscale Horiz., 2020, 5(11):1467-1475.
[13] Li Y, Guan S, Huo H, Ma Y, Gao Y, Zuo P, Yin G. A review of magnesium aluminum chloride complex electrolytes for Mg batteries[J]. Adv. Funct. Mater., 2021, 31(24):1-22.
[14] Liu F, Wang T, Liu X, Fan L Z. Challenges and recent progress on key materials for rechargeable magnesium batteries[J]. Adv. Energy Mater., 2021, 11(2):1-28.
[15] Wang F F, Guo Y S, Yang J, Nuli Y, Hirano S I. A novel electrolyte system without a Grignard reagent for recharge-able magnesium batteries[J]. Chem. Commun., 2012, 48(87):10763-10765.
[16] Shuai H, Xu J, Huang K. Progress in retrospect of electrolytes for secondary magnesium batteries[J]. Coord. Chem. Rev., 2020, 422:213478.
[17] Zhao-Karger Z, Zhao X, Fuhr O, Fichtner M. Bisamide based non-nucleophilic electrolytes for rechargeable magnesium batteries[J]. RSC Adv., 2013, 3(37):16330-16335.
[18] Mao M, Gao T, Hou S, Wang C S. A critical review of cathodes for rechargeable Mg batteries[J]. Chem. Soc. Rev., 2018, 47(23):8804-8841.
[19] Tan S, Xiong F, Wang J, An Q, Mai L Q. Crystal regulation towards rechargeable magnesium battery cathode materials[J]. Mater. Horiz., 2020, 7(8):1971-1995.
[20] Kim H S, Arthur T S, Allred G D, Zajicek J, Newman J G, Rodnyansky A E, Oliver A G, Boggess W C, Muldoon J. Structure and compatibility of a magnesium electrolyte with a sulphur cathode[J]. Nat. Commun., 2011, 2(1):1-6.
[21] Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chem. Rev., 2014, 114(23):11503-11618.
[22] Sun Y, Zou Q, Wang W, Lu Y C. Non-passivating anion adsorption enables reversible magnesium redox in simple non-nucleophilic electrolytes[J]. ACS Energy Lett., 2021, 6(10):3607-3613.
[23] Li X, Gao T, Han F, Ma Z, Fan X, Hou S, Eidson N, Li W, Wang C. Reducing Mg anode overpotential via ion conductive surface layer formation by iodine additive[J]. Adv. Energy Mater., 2018, 8(7):1-6.
[24] Wu M, Bhargav A, Cui Y, Siegel A, Agarwal M, Ma Y, Fu Y. Highly reversible diphenyl trisulfide catholyte for rechargeable lithium batteries[J]. ACS Energy Lett., 2016, 1(6):1221-1226.
[25] Pipes R, Bhargav A, Manthiram A. Phenyl disulfide additive for solution-mediated carbon dioxide utilization in Li-CO2 batteries[J]. Adv. Energy Mater., 2019, 9(21):1-8.
[26] Aurbach D, Suresh GS, Levi E, Mitelman A, Mizrahi O, Chusid O, Brunelli M. Progress in rechargeable magnesium battery technology[J]. Adv. Mater., 2007, 19(23):4260-4267.
[27] Roux M V, Foces-Foces C, Notario R, Ribeiro da Silva M A, Ribeiro da Silva M, Santos A, Juaristi E. Experimental and computational thermochemical study of sulfur-containing Amino acids: L-Cysteine, L-Cystine, and L-Cysteine-derived radicals. S-S, S-H, and C-S bond dissociation enthalpies[J]. J. Phys. Chem. B, 2010, 114(32):10530-10540.
[28] Scheriber F. Structure and growth of self-assembling monolayers[J]. Prog. Surf. Sci., 2000, 65(5-8):151-257.
[29] Roberts J, Friend C. Spectroscopic identification of surface phenyl thiolate and benzyne on Mo(110)[J]. J. Chem. Phys., 1988, 88(11):7172-7180.
[30] Lu J Y, Ke C Z, Gong Z L, Li D P, Ci L J, Zhang L, Zhang Q B. Application of in-situ characterization techniques in all-solid-state lithium batteries[J]. Acta Phys. Sin., 2021, 70(19):198102.
[31] Zhang Q B, Gong Z L, Yang Y. Advance in interface and characterizations of sulfide solid electrolyte materials. Acta Phys. Sin., 2020, 69(22):228803.
[32] Yang K, Chen L, Ma J, Lai C, Huang Y, Mi J, Biao J, Zhang D, Shi P, Xia H. Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries[J]. Angew. Chem. Int. Ed., 2021, 60:24668-24675.
[33] Lei D, He Y B, Huang H, Yuan Y, Zhong G, Zhao Q, Hao X, Zhang D, Lai C, Zhang S. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery[J]. Nat. Comm., 2019, 10:1-11.
[34] Yi R W, Mao Y Y, Shen Y B, Chen L W. Self-assembled monolayers for batteries[J]. J. Am. Chem. Soc., 2021, 143(33):12897-12912.
文章导航

/