水热法制备锂电池Si@C负极材料的工艺优化研究
Optimized Electrochemical Performance of Si@C Prepared by Hydrothermal Reaction and Glucose Carbon Source
Received date: 2021-12-22
Revised date: 2022-02-28
Online published: 2022-03-04
水热法是广泛应用于锂离子电池Si@C电极材料的一种制备方法,其反应条件是影响产物最终形貌和性能的重要因素, 采取最佳的反应工艺可以大大提升材料的电化学性能。本研究中, 使用葡萄糖作为碳源, 光伏切割废料硅为硅源, 探究了水热法制备核壳结构Si@C电极材料的最优工艺, 分别研究了温度、 原料浓度、 反应时间和原料比例对产物的形貌、 性能的影响以及相互之间的关系, 并得到最佳反应条件。在该条件下(葡萄糖浓度为0.5 mol·L-1, 硅与葡萄糖重量比为0.3:1, 反应温度190 oC, 反应时间9 h), 得到了包覆完整、 粒径适中的Si@C电极材料(CS190-3), 对以该样品为负极的扣式半电池进行电化学测试, 在655 mA·g-1的电流密度下, 其首圈放电比容量为3369.5 mAh·g-1, 经过500次循环剩余容量为1405.0 mAh·g-1。倍率测试中, 在6550 mA·g-1的电流密度下,其剩余容量为937.1 mAh·g-1,当电流密度恢复至655 mA·g-1时,电池放电比容量仍可恢复至1683.0 mAh·g-1。
关键词: 水热反应; 核壳结构Si@C材料; 葡萄糖; 锂离子电池负极材料
陈思 , 郑淞生 , 郑雷铭 , 张叶涵 , 王兆林 . 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学, 2022 , 28(8) : 2112221 . DOI: 10.13208/j.electrochem.211222
Silicon (Si) has been considered as the potential material for the next-generation lithium-ion batteries (LIBs) for its high capacity (4200 mAh·g-1, Li22Si5) and suitable working voltage (about 0.25 V vs. Li/Li+). However, the cycling stability and electrochemical performance of Si anode become significant challenges because of low intrinsic conductivity and huge volume variation (about 400%) during cycling processes. In addition, the repeated formation and destruction of surface solid electrolyte interphase (SEI) film will continuously consume the electrolyte and cause damage to LIBs. Carbon (C) materials, such as graphite, carbon spheres and tubes, have been widely applied to ameliorate the conductivity and restrict the volume change of Si anode, which guarantees electrical performance. Especially, a Si@C core-shell structure is preferred to perform a high capacity and relatively good cycle stability. The hydrothermal process has been commonly used to prepare Si@C anodes for LIBs, therefore, it is significant to optimize the preparing conditions to achieve ideal electrochemical performance. In this study, glucose was taken as the carbon source, using the Si waste from the photovoltaic industry as raw materials to prepare Si@C core-shell structure by hydrothermal process. The preparing parameters have been evaluated and optimized, including temperature, reaction time, raw material composition, and mass ratio.
The optimal preparing process was proceeded in the solution with a glucose concentration of 0.5 mol·L-1 and a Si/glucose mass ratio of 0.3. Then, it was treated in a hydrothermal reactor at 190 oC for 9 h. The obtained Si@C anode candidate (Sample CS190-3) was tested with a coin half-cell. The specific capacity after the first cycle reached 3369.5 mAh·g-1, and the remaining capacity after 500 cycles 1405.0 mAh·g-1 in a current density of 655 mAh·g-1. Moreover, for the rate testing, it retained the discharge capacities of 2328.7 mAh·g-1, 2209.8 mAh·g-1, 2007.1 mAh·g-1, 1769.2 mAh·g-1, 1307.7 mAh·g-1 and 937.1 mAh·g-1 at the charge rates of 655 mA·g-1, 1310 mA·g-1, 2620 mA·g-1, 3930 mA·g-1, 5240 mA·g-1, and 6550 mA·g-1, respectively. And it was recovered to 1683.0 mAh·g-1 when the current density was restored to 655 mA·g-1. In addition, the EIS data revealed that the half-circle radius of the sample obtained by using the optimal conditions (Sample CS190-3) in the low-frequency region was greatly reduced, and the Warburg impedance became the smallest. This work can provide an important approach, and make a significant impact in the preparation of Si/C anode material for LIBs.
Key words: hydrothermal reaction; Si@C ball structure; glucose; anode materials
[1] | Xu Q, Li J Y, Sun J K, Yin Y X, Wan L J, Guo Y G. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes[J]. Adv. Energy Mater., 2017, 7(3): 1601481. |
[2] | Scrosati B, Garche J. Lithium batteries: Status, prospects and future[J]. J. Power Sources, 2010, 195(9): 2419-2430. |
[3] | Li B, Li S X, Jin Y, Zai J T, Chen M, Nazakat A, Zhan P, Huang Y, Qian X F. Porous Si@C ball-in-ball hollow spheres for lithium-ion capacitors with improved energy and power densities[J]. J. Mater. Chem. A, 2018, 6(42): 21098-21103. |
[4] | Kennedy B, Patterson D, Camilleri S. Use of lithium-ion batteries in electric vehicles[J]. J. Power Sources, 2000, 90(2): 156-162. |
[5] | Sourice J, Bordes A, Boulineau A, Alper J P, Franger S, Quinsac A, Habert A, Leconte Y, De Vito E, Porcher W, Reynaud C, Herlin-Boime N, Haon C. Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries[J]. J. Power Sources, 2016, 328: 527-535. |
[6] | Liu L H, Lyu J, Li T H, Zhao T K. Well-constructed silicon-based materials as high-performance lithium-ion battery anodes[J]. Nanoscale, 2016, 8(2): 701-722. |
[7] | Palomino J, Varshney D, Weiner B R, Morell G. Study of the structural changes undergone by hybrid nanostructured Si-CNTs employed as an anode material in a rechargeable lithium-ion battery[J]. J. Phys. Chem. C, 2015, 119(36): 21125-21134. |
[8] | Luo Z P, Xiao Q Z, Lei G T, Li Z H, Tang C J. Si Nano-particles/graphene composite membrane for high performance silicon anode in lithium ion batteries[J]. Carbon, 2016, 98: 373-380. |
[9] | Zhou X S, Yin Y X, Cao A M, Wan L J, Guo Y G. Efficient 3D conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode[J]. ACS Appl. Mater. Interfaces, 2012, 4(5): 2824-2828. |
[10] | Sun C F, Karki K, Jia Z, Liao H W, Zhang Y, Li T, Qi Y, Cumings J, Rubloff G W, Wang Y H. A beaded-string silicon anode[J]. ACS Nano, 2013, 7(3): 2717-2724. |
[11] | Ma Z S, Li T T, Huang Y L, Liu J, Zhou Y C, Xue D F. Critical silicon-anode size for averting lithiation-induced mechanical failure of lithium-ion batteries[J]. RSC Adv., 2013, 3(20): 7398-7402. |
[12] | Lee S W, Mcdowell M T, Choi J W, Cui Y. Anomalous shape changes of silicon nanopillars by electrochemical lithiation[J]. Nano Lett., 2011, 11(7): 3034-3039. |
[13] | Lux S F, Lucas I T, Pollak E, Passerini S, Winter M, Kostecki R. The mechanism of Hf formation in LiPF6 based organic carbonate electrolyte[J]. Electrochem. Co-mmun., 2012, 14(1): 47-50. |
[14] | Guo S, Li H X, Bai H M, Tao Z L, Chen J. Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries[J]. J. Power Sources, 2014, 248: 1141-1148. |
[15] | Choi H S, Lee J G, Lee H Y, Kim S W, Park C R. Effects of surrounding confinements of Si nanoparticles on Si-based anode performance for lithium ion batteries[J]. Electrochim. Acta, 2010, 56(2): 790-796. |
[16] | Kim H, Cho J. Superior lithium electroactive mesoporous Si@carbon coreshell nanowires for lithium battery anode material[J]. Nano Lett., 2008, 8(11): 3688-3691. |
[17] | Jeong S, Lee J P, Ko M, Kim G, Park S, Cho J. Etched graphite with internally grown Si nanowires from pores as an anode for high density Li-ion batteries[J]. Nano Lett., 2013, 13(7): 3403-3407. |
[18] | Liu R P, Shen C, Dong Y, Qin J L, Wang Q, Iocozzia J, Zhao S Q, Yuan K J, Han C P, Li B H, Lin Z Q. Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries[J]. J. Mater. Chem. A, 2018, 6(30): 14797-14804. |
[19] | Song T, Jeon Y, Paik U. Si nanotubes array sheathed with sin/sioxny layer as an anode material for lithium ion batteries[J]. J. Electroceram., 2014, 32(1): 66-71. |
[20] | Fan Z Q, Zheng S S, He S, Ye Y Y, Liang J H, Shi A D, Wang Z L, Zheng Z F. Preparation of micron Si@C anodes for lithium ion battery by recycling the lamellar submicron silicon in the kerf slurry waste from photovoltaic industry[J]. Diam. Relat. Mat., 2020, 107: 107898. |
[21] | Mishra K, Zheng J M, Patel R, Estevez L, Jia H P, Luo L L, El-Khoury P Z, Li X L, Zhou X D, Zhang J G. High performance porous Si@C anodes synthesized by low temperature aluminothermic reaction[J]. Electrochim. Acta, 2018, 269: 509-516. |
[22] | Yang J P, Wang Y X, Chou S L, Zhang R Y, Xu Y F, Fan J W, Zhang W X, Liu H K, Zhao D Y, Dou S X. Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries[J]. Nano Energy, 2015, 18: 133-142. |
[23] | Bae J. Fabrication of carbon microcapsules containing silicon nanoparticles-carbon nanotubes nanocomposite for anode in lithium ion battery[J]. J. Solid State Chem., 2011, 184(7): 1749-1755. |
[24] | Xu Q, Li J Y, Yin Y X, Kong Y M, Guo Y G, Wan L J. Nano/micro structured Si/C anodes with high initial coulombic efficiency in Li ion batteries[J]. Chem.-Asian J., 2016, 11(8): 1205-1209. |
[25] | Liang J, Fan Z, Chen S, Zheng S, Wang Z. A novel three-dimensional cross-linked net structure of submicron Si as high-performance anode for libs[J]. J. Alloy. Compd., 2021, 860: 158433. |
[26] | Kim J Y, Nguyen D T, Kang J S, Song S W. Facile synthesis and stable cycling ability of hollow submicron silicon oxide-carbon composite anode material for Li-ion battery[J]. J. Alloy. Compd., 2015, 633: 92-96. |
[27] | Li B, Xiao Z J, Zai J T, Chen M, Wang H H, Liu X J, Li G, Qian X F. A candidate strategy to achieve high initial coulombic efficiency and long cycle life of Si anode materials: Exterior carbon coating on porous Si microparticles[J]. Mater. Today Energy, 2017, 5: 299-304. |
[28] | Dou X Y, Chen M, Zai J T, De Z, Dong B X, Liu X J, Ali N, Tsega T T, Qi R R, Qian X F. Carbon coated porous silicon flakes with high initial coulombic efficiency and long-term cycling stability for lithium ion batteries[J]. Sustain. Energ. Fuels, 2019, 3(9): 2361-2365. |
[29] | Wu Z Z, Ji S P, Liu T C, Duan Y D, Xiao S, Lin Y, Xu K, Pan F. Aligned Li+ tunnels in core-shell Li(NixMnyCoz)O2@LiFePO4 enhances its high voltage cycling stability as Li-ion battery cathode[J]. Nano Lett., 2016, 16(10): 6357-6363. |
[30] | Feng K, Li M, Zhang Y N, Liu W W, Kashkooli A G, Xiao X C, Chen Z W. Micron-sized secondary Si/C composite with in situ crosslinked polymeric binder for high-energy-density lithium-ion battery anode[J]. Electrochim. Acta, 2019, 309: 157-165. |
[31] | Fan Z Q, Wang Y T, Zheng S S, Xu K, Wu J Y, Chen S, Liang J H, Shi A D, Wang Z L. A submicron Si@C core-shell intertwined with carbon nanowires and graphene nanosheet as a high-performance anode material for lithium ion battery[J]. Energy Storage Mater., 2021, 39: 1-10. |
[32] | Chen X L, Gerasopoulos K, Guo J C, Brown A, Wang C S, Ghodssi R, Culver J N. A patterned 3D silicon anode fabricated by electrodeposition on a virus-structured current collector[J]. Adv. Funct. Mater., 2010, 21(2): 380-387. |
[33] | Sourice J, Quinsac A, Leconte Y, Sublemontier O, Porcher W, Haon C, Bordes A, De Vito E, Boulineau A, Larbi S J S, Herlin-Boime N, Reynaud C. One-step synthesis of Si@C nanoparticles by laser pyrolysis: High-capacity anode material for lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2015, 7(12): 6637-6644. |
[34] | Momoki K, Manabe T, Li L, Yan J W. Silicon nanoparticle generation and deposition on glass from waste silicon powder by nanosecond pulsed laser irradiation[J]. Mater. Sci. Semicond. Process, 2020, 111: 104998. |
[35] | Momoki K, Yan J W. Nanoparticle generation from various types of silicon materials by nanosecond-pulsed laser irradiation[J]. Appl. Phys. Express, 2020, 13(2): 026505. |
[36] | Li X L, Meduri P, Chen X L, Qi W, Engelhard M H, Xu W, Ding F, Xiao J, Wang W, Wang C M, Zhang J G, Liu J. Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes[J]. J. Mater. Chem., 2012, 22(22): 11014-11017. |
[37] | Cui L F, Yang Y, Hsu C M, Cui Y. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries[J]. Nano Lett., 2009, 9(9): 3370-3374. |
[38] | Han H, Huang Z P, Lee W. Metal-assisted chemical etching of silicon and nanotechnology applications[J]. Nano Today, 2014, 9(3): 271-304. |
[39] | Shen D Z, Huang C F, Gan L H, Liu J, Gong Z L, Long M N. Rational design of Si@SiO2/C composites using sustainable cellulose as a carbon resource for anodes in lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2018, 10(9): 7946-7954. |
[40] | Wu J, Tu W M, Zhang Y, Guo B L, Li S S, Zhang Y, Wang Y D, Pan M. Poly-dopamine coated graphite oxide/ silicon composite as anode of lithium ion batteries[J]. Powder Technol., 2017, 311: 200-205. |
[41] | Yu H J, Li X T, Fang H, Chen Q Y, Jiang F, Shao G. Gold/silicon nanocomposites: synthesis, characterization, and application in detection of dopamine[J]. Mater. Sci., 2011, 22(6): 690-693. |
[42] | Liang J H, Chen S, Fan Z Q, Zheng S S, Wang Z L. N-doped C/Si@damo composite material using PVP as the carbon source for lithium-ion batteries anode[J]. Ionics, 2021, 27(10): 4185-4196. |
[43] | Bhagavannarayana G, Sharma S N, Sharma R K, Lakshmikumar S T. A comparison of the properties of porous silicon formed on polished and textured (100) Si: High resolution XRD and PL studies[J]. Mater. Chem. Phys., 2006, 97(2-3): 442-447. |
[44] | Sevilla M, Fuertes A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chem.-Eur. J., 2009, 15(16): 4195-4203. |
[45] | Huang Y, Pemberton J E. Synthesis of uniform, spherical sub-100nm silica particles using a conceptual modification of the classic lamer model[J]. Colloid Surf. A-Physi-cochem. Eng. Asp., 2010, 360(1-3): 175-183. |
/
〈 |
|
〉 |