欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

同步辐射表征技术在金属空气电池研究中的应用

  • 宋亚杰 ,
  • 孙雪 ,
  • 任丽萍 ,
  • 赵雷 ,
  • 孔凡鹏 ,
  • 王家钧
展开
  • 1.工信部新能源转换与存储关键材料技术重点实验室,哈尔滨工业大学,黑龙江 哈尔滨 150001
    2.哈尔滨工业大学重庆研究院,重庆 401135

收稿日期: 2021-10-17

  修回日期: 2021-12-04

  网络出版日期: 2021-12-18

版权

《电化学》编辑部, 2022, 版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Synchrotron X-Rays Characterizations of Metal-Air Batteries

  • Ya-Jie Song ,
  • Xue Sun ,
  • Li-Ping Ren ,
  • Lei Zhao ,
  • Fan-Peng Kong ,
  • Jia-Jun Wang
Expand
  • 1. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
    2. Chongqing Research Institute of HIT, Chongqing 401135, China
*Fan-Peng Kong: Tel: (86-451) 86403807, E-mail: fpkong@hit.edu.cn;
Jia-Jun Wang: Tel: (86-451) 86403807, E-mail: jiajunhit@hit.edu.cn

Received date: 2021-10-17

  Revised date: 2021-12-04

  Online published: 2021-12-18

Copyright

, 2022, Copyright reserved © 2022

摘要

电动汽车的快速发展迫切需要高能量密度的电池。近年来,金属空气电池由于其超高的理论能量密度,在工业和学术领域引起了广泛的关注。然而,其副反应严重、能量效率低、循环寿命有限等诸多缺点严重阻碍了其实际应用的可行性。了解电池反应机理并进一步制定有效的策略有利于金属-空气电池的实际应用。在过去十年中,先进的表征技术加速了金属空气电池的发展。特别是基于同步加速器的表征技术因其无损检测能力和高分辨率已被广泛应用于金属空气电池的机理理解。在这篇综述中,我们系统地总结了各种用于分析金属空气电池局部结构和化学特性的同步辐射表征技术,特别关注于这些先进的表征技术如何帮助理解电池降解机理和优化策略的本质。本进展报告旨在强调同步辐射表征在金属空气电池机理理解的关键作用。

本文引用格式

宋亚杰 , 孙雪 , 任丽萍 , 赵雷 , 孔凡鹏 , 王家钧 . 同步辐射表征技术在金属空气电池研究中的应用[J]. 电化学, 2022 , 28(3) : 2108461 . DOI: 10.13208/j.electrochem.210846

Abstract

The rapid development of electric vehicles urgently requires high-energy-density batteries. Recently, metal-air batteries have attracted much attention in industry and academia for their ultra-high theoretical energy densities. However, the practical application of metal-air batteries is severely impeded by multiple drawbacks, including severe side reactions, low energy efficiency, and limited cycle life. Understanding the reaction mechanism of the cell and further developing effective strategies are beneficial for the practical application of metal-air batteries. In the past decade, advanced characterization techniques have accelerated the development of metal-air batteries. In particular, synchrotron radiation-based characterization techniques have been widely applied to the mechanistic study of metal-air batteries due to their non-destructive detection capability and high resolution. In this review, various synchrotron radiation-based characterization techniques are systematically summarized to understand the local structure and chemistry of metal-air batteries, with a special focus on how these advanced techniques can help understand the essence of degradation mechanism and optimization strategies. This progress report aims to highlight the crucial role of synchrotron radiation characterization for mechanism understanding of metal-air batteries.

参考文献

[1] Abraham D. Advances in lithium-ion battery research and technology[J]. JOM-J. Miner. Met. Mater. Soc., 2002, 54(3):18-19.
[2] Thackeray M M, Thomas J O, Whittingham M S. Science and applications of mixed conductors for lithium batteries[J]. MRS Bull., 2000, 25(3):39-46.
[3] Yang Y F, Yang J L, Pan F, Cui Y. From intercalation to alloying chemistry: Structural design of silicon anodes for the next generation of lithium-ion batteries[J]. Chinese J. Struct. Chem., 2020, 39(1):16-19.
[4] Shao Y Q, Jiang Z S, Zhang Q Q, Guan J Q. Progress in nonmetal-doped graphene electrocatalysts for the oxygen reduction reaction[J]. ChemSusChem, 2019, 12(10):2133-2146.
[5] Dabill D W, Walsh P T. The effect of hyperbaric pressure on catalytic and electrochemical gas sensors[J]. Sens. Actuators B Chem., 1996, 30(2):111-119.
[6] Cao R G, Lee J S, Liu M L, Cho J. Recent progress in non-precious catalysts for metal-air batteries[J]. Adv. Energy Mater., 2012, 2(7):816-829.
[7] Shimonishi Y, Zhang T, Johnson P, Imanishi N, Hirano A, Takeda Y, Yamamoto O, Sammes N. A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions[J]. J. Power Sources, 2010, 195(18):6187-6191.
[8] Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries[J]. Chem. Rev., 2014, 114(23):11636-11682.
[9] Yin W W, Fu Z W. The potential of Na-air batteries[J]. ChemCatChem, 2017, 9(9):1545-1553.
[10] Otaegui L, Rodriguez-Martinez L M, Wang L, Laresgoiti A, Tsukamoto H, Han M H, Tsai C L, Laresgoiti I, Lopez C M, Rojo T. Performance and stability of a liquid anode high-temperature metal-air battery[J]. J. Power Sources, 2014, 247:749-755.
[11] Crowther O, Keeny D, Moureau D M, Meyer B, Salomon M, Hendrickson M. Electrolyte optimization for the primary lithium metal air battery using an oxygen selective membrane[J]. J. Power Sources, 2012, 202:347-351.
[12] Jung K N, Hwang S M, Park M S, Kim K J, Kim J G, Dou S X, Kim J H, Lee J W. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries[J]. Sci. Rep., 2015, 5:7665.
[13] Bai J J, Lu H M, Cao Y, Li X D, Wang J R. A novel ionic liquid polymer electrolyte for quasi-solid state lithium air batteries[J]. RSC Adv., 2017, 7(49):30603-30609.
[14] Liu J T, Xie Y, Gao Q, Cao F H, Qin L, Wu Z Y, Zhang W, Li H, Zhang C L. 1D MOF-derived N-doped porous carbon nanofibers encapsulated with Fe3C nanoparticles for efficient bifunctional electrocatalysis[J]. Eur. J. Inorg. Chem., 2020, 2020(6):581-589.
[15] Zhao N, Li C L, Guo X X. Long-life Na-O2 batteries with high energy efficiency enabled by electrochemically splitting NaO2 at a low overpotential[J]. Phys. Chem. Chem. Phys., 2014, 16(29):15646-15652.
[16] Wang L G, Dai A V, Xu W Q, Lee S, Cha W, Harder R, Liu T C, Ren Y, Yin G P, Zuo P J, Wang J, Lu J, Wang J J. Structural distortion induced by manganese activation in a lithium-rich layered cathode[J]. J. Am. Chem. Soc., 2020, 142(35):14966-14973.
[17] Zhang F, Lou S F, Li S, Yu Z J, Liu Q S, Dai A, Cao C T, Toney M F, Ge M Y, Xiao X H, Lee W K, Yao Y D, Deng J J, Liu T C, Tang Y P, Yin G P, Lu J, Su D, Wang J J. Surface regulation enables high stability of single-cry-stal lithium-ion cathodes at high voltage[J]. Nat. Commun., 2020, 11(1):3035.
[18] Sun N, Liu Q S, Cao Y, Lou S F, Ge M Y, Xiao X H, Lee W K, Gao Y Z, Yin G P, Wang J J, Sun X L. Anisotropically electrochemical-mechanical evolution in solid-state batteries and interfacial tailored strategy[J]. Angew. Chem. Int. Ed., 2019, 58(51):18647-18653.
[19] Lou S F, Liu Q W, Zhang F, Liu Q S, Yu Z J, Mu T S, Zhao Y, Borovilas J, Chen Y J, Ge M Y, Xiao X H, Lee W K, Yin G P, Yang Y, Sun X L, Wang J J. Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries[J]. Nat. Commun., 2020, 11(1):5700.
[20] Wang J J, Chen-Wiegart Y C K, Eng C, Shen Q, Wang J. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles[J]. Nat. Commun., 2016, 7:12372.
[21] Jacobsen C, Kirz J. X-ray microscopy with synchrotron radiation[J]. Nat. Struct. Biol., 1998, 5:650-653.
[22] Bodo G, Ghisellini G, Trussoni E. Diamagnetic effects in synchrotron sources[J]. Mon. Not. R. Astron. Soc., 1992, 255(4):694-700.
[23] Herklotz M, Weiss J, Ahrens E, Yavuz M, Mereacre L, Kiziltas-Yavuz N, Drager C, Ehrenberg H, Eckert J, Fauth F, Giebeler L, Knapp M. A novel high-throughput setup for in situ powder diffraction on coin cell batteries[J]. J. Appl. Crystallogr., 2016, 49:340-345.
[24] Wang J J, Chen-Wiegart Y C K, Wang J. In situ three-di-mensional synchrotron X-ray nanotomography of the (De)lithiation processes in tin anodes[J]. Angew. Chem. Int. Ed., 2014, 53(17):4460-4464.
[25] Wang J J, Chen-Wiegart Y C K, Wang J. In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy[J]. Nat. Commun., 2014, 5:4570.
[26] Lou S F, Zhang F, Fu C K, Chen M, Ma Y L, Yin G P, Wang J J. Interface issues and challenges in all-solid-state batteries: Lithium, sodium, and beyond[J]. Adv. Mater., 2021, 33(6):2000721.
[27] Lou S F, Yu Z J, Liu Q S, Wang H, Chen M, Wang J J. Multi-scale imaging of solid-state battery interfaces: From atomic scale to macroscopic scale[J]. Chem, 2020, 6(9):2199-2218.
[28] Wang L G, Wang J J, Zuo P J. Probing battery electrochemistry with in operando synchrotron X-ray imaging techniques[J]. Small Methods, 2018, 2(8):1700293.
[29] Cao C T, Toney M F, Sham S K, Harder R, Shearing P R, Xiao X H, Wang J J. Emerging X-ray imaging technologies for energy materials[J]. Mater. Today, 2020, 34:132-147.
[30] Rahimabadi P S, Khodaei M, Koswattage K R. Review on applications of synchrotron-based X-ray techniques in materials characterization[J]. X-Ray Spectrom., 2020, 49(3):348-373.
[31] Paterson A, Stevens R. Phase analysis of sintered yttria-zirconia ceramics by X-ray diffraction[J]. J. Mater. Res., 1986, 1(2):295-299.
[32] Scardi P, Leoni M, Cappuccio G, Sessa V, Terranova M L. Residual stress in polycrystalline diamond Ti6Al4Vsystems[J]. Diamond Relat. Mater., 1997, 6(5-7):807-811.
[33] Vink T J, Somers M A J, Daams J L C, Dirks A G. Stress, strain, and microstructure of sputter-deposited Mo thin-films[J]. J. Appl. Phys., 1991, 70(8):4301-4308.
[34] Hirayama M, Ido H, Kim K, Cho W, Tamura K, Mizuki J, Kanno R. Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction[J]. J. Am. Chem. Soc., 2010, 132(43):15268-15276.
[35] Wu C J, Hua W B, Zhang Z, Zhong B H, Yang Z G, Feng G L, Xiang W, Wu Z G, Guo X D. Design and synjournal of layered Na2Ti3O7 and tunnel Na2Ti6O13 hybrid structures with enhanced electrochemical behavior for sodium-ion batteries[J]. Adv. Sci. Lett., 2018, 5(9):1800519.
[36] Gonzalo E, Zarrabeitia M, Drewett N E, del Amo J M L, Rojo T. Sodium manganese-rich layered oxides: potential candidates as positive electrode for sodium-ion batteries[J]. Energy Stor. Mater., 2021, 34:682-707.
[37] Gu X D, Reinspach J, Worfolk B J, Diao Y, Zhou Y, Yan H P, Gu K V, Mannsfeld S, Toney M F, Bao Z N. Compact roll-to-roll coater for in situ X-ray diffraction characterization of organic electronics printing[J]. ACS Appl. Mater. Interfaces, 2016, 8(3):1687-1694.
[38] Shui J L, Okasinski J S, Liu D J. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries[J]. Nat. Commun., 2013, 4:2255.
[39] Lupina G, Schroeder T, Dabrowski J, Wenger C, Mane A, Lippert G, Mussig H J, Hoffmann P, Schmeisser D. Praseodymium silicate layers with atomically abrupt interface on Si(100)[J]. Appl. Phys. Lett., 2005, 87(9):092901
[40] King G C, Yencha A J, Lopes M C A. Threshold photoelectron spectroscopy using synchrotron radiation[J]. Application of Accelerators in Research and Industry, 2001, 576:703-706.
[41] Sun Z H, Liu Q H, Yao T, Yan W S, Wei S Q. X-ray absorption fine structure spectroscopy in nanomaterials[J]. Sci. China. Mater., 2015, 58(4):313-341.
[42] Fujikawa T, Rehr J J, Wada Y, Nagamatsu S. Approximate spherical wave Debye-Waller factors in EXAFS and XANES spectra[J]. J. Phys. Soc. Jpn., 1999, 68(4):1259-1268.
[43] Fornasini P, Grisenti R, Dapiaggi M, Agostini G. Local structural distortions in SnTe investigated by EXAFS[J]. J. Phys. Condens. Matter, 2021, 33(29):295404.
[44] Husain H, Hariyanto B, Sulthonul M, Thamatkeng P, Pratapa S. Local structure examination of mineral-derived Fe2O3 powder by Fe K-edge EXAFS and XANES[C]//Proceedings of 5th International Conference on Advanced Materials Sciences and Technology. Makassar City, Indonesia, September 19-20, 2017.
[45] Naftel S J, Coulthard I, Hu Y, Sham T K, Zinke-Allmang M. X-ray absorption fine structure (XAFS) studies of cobalt silicide thin films[C]//Proceedings of Applications of Synchrotron Radiation Techniques to Materials Science IV. San Francisco City, United States of America, April 13-17, 1998.
[46] Yonemura T, Iihara J, Uemura S, Yamaguchi K, Niibe M. Development of the Surface-sensitive Soft X-ray Absorption Fine Structure Measurement Technique for the Bulk Insulator[C]//Proceedings of 12th International Conference on Synchrotron Radiation Instrumentation. New York City, United States of America, July 06-10, 2015.
[47] Ohkubo M, Shiki S, Ukibe M, Matsubayashi N, Kitajima Y, Nagamachi S. X-ray absorption near edge spectroscopy with a superconducting detector for nitrogen dopants in SiC[J]. Sci. Rep., 2012, 2:831.
[48] Hoffman C L, Nicholas S L, Ohnemus D C, Fitzsimmons J N, Sherrell R M, German C R, Heller M I, Lee J M, Lam P J, Toner B M. Near-field iron and carbon chemistry of non-buoyant hydrothermal plume particles, Southern East Pacific Rise 15 degrees S[J]. Mar. Chem., 2018, 201:183-197.
[49] Li L S, Chen-Wiegart Y C K, Wang J J, Gao P, Ding Q, Yu Y S, Wang F, Cabana J, Wang J, Jin S. Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging[J]. Nat. Commun., 2015, 6:6883.
[50] Tsai P C, Wen B H, Wolfman M, Choe M J, Pan M S, Su L, Thornton K, Cabana J, Chiang Y M. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries[J]. Energy Environ. Sci., 2018, 11(4):860-871.
[51] Elango R, Demortiere A, De Andrade V, Morcrette M, Seznec V. Thick binder-free electrodes for Li-ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity[J]. Adv. Energy Ma-ter., 2018, 8(15):1703031.
[52] Zhao C H, Wada T, De Andrade V, Gursoy D, Kato H, Chen-Wiegart Y C K. Imaging of 3D morphological evolution of nanoporous silicon anode in lithium ion battery by X-ray nano-tomography[J]. Nano Energy, 2018, 52:381-390.
[53] Sun L, Liu D X. Chemical activation of commercial CNTs with simultaneous surface deposition of manganese oxide nano flakes for the creation of CNTs-graphene supported oxygen reduction ternary composite catalysts applied in air fuel cell[J]. Appl. Surf. Sci., 2018, 447:518-527.
[54] Wang Y Q, Yu B Y, Liu K, Yang X T, Liu M, Chan T S, Qiu X Q, Li J, Li W Z. Co single-atoms on ultrathin N-doped porous carbon via a biomass complexation strategy for high performance metal-air batteries[J]. J. Mater. Chem. A, 2020, 8(4):2131-2139.
[55] Kim T, Ohata Y, Kim J, Rhee C K, Miyawaki J, Yoon S H. Fe nanoparticle entrained in tubular carbon nanofiber as an effective electrode material for metal-air batteries: A fundamental reason[J]. Carbon, 2014, 80:698-707.
[56] de Vasconcelos G J Q, Miqueles E X, Costa G S R. Responsive alignment for X-ray tomography beamlines[J]. J. Synchrotron Radiat., 2018, 25:1774-1779.
[57] Morrell A P, Mosselmans J F W, Geraki K, Ignatyev K, Castillo-Michel H, Monksfield P, Warfield A T, Febbraio M, Roberts H M, Addison O, Martin R A. Implications of X-ray beam profiles on qualitative and quantitative synchrotron micro-focus X-ray fluorescence microscopy[J]. J. Synchrotron Radiat., 2018, 25:1719-1726.
[58] Sun F, Gao R, Zhou D, Osenberg M, Dong K, Kardjilov N, Hilger A, Markotter H, Bieker P M, Liu X F, Manke I. Revealing hidden facts of Li anode in cycled lithium oxygen batteries through X-ray and neutron tomography[J]. ACS Energy Lett., 2019, 4(1):306-316.
[59] Tan P, Jiang H R, Zhu X B, An L, Jung C Y, Wu M C, Shi L, Shyy W, Zhao T S. Advances and challenges in lithium-air batteries[J]. Appl. Energy, 2017, 204:780-806.
[60] Wang Y, Lu Y C. Nonaqueous lithium-oxygen batteries: Reaction mechanism and critical open questions[J]. Energy Stor. Mater., 2020, 28:235-246.
[61] Yamaki J I, Tobishima S I, Sakurai Y, Saito K I, Hayashi K. Safety evaluation of rechargeable cells with lithium metal anodes and amorphous V2O5 cathodes[J]. J. Appl. Electrochem., 1998, 28(2):135-140.
[62] Takehara Z. Future prospects of the lithium metal anode[J]. J. Power Sources, 1997, 68(1):82-86.
[63] Wang X F, Feng Z J, Huang J T, Deng W, Li X B, Zhang H S, Wen Z H. Graphene-decorated carbon-coated LiFePO4 nanospheres as a high-performance cathode material for lithium-ion batteries[J]. Carbon, 2018, 127:149-157.
[64] Sun F, Zielke L, Markoetter H, Hilger A, Zhou D, Moroni R, Zengerle R, Thiele S, Banhart J, Manke I. Morphological evolution of electrochemically plated/stripped lithium microstructures investigated by synchrotron X-ray phase contrast tomography[J]. ACS Nano, 2016, 10(8):7990-7997.
[65] Younesi R, Hahlin M, Edstrom K. Surface characterization of the carbon cathode and the lithium anode of Li-O2 batteries using LiClO4 or LiBOB salts[J]. ACS Appl. Mater. Interfaces, 2013, 5(4):1333-1341.
[66] Park J B, Lee S H, Jung H G, Aurbach D, Sun Y K. Redox mediators for Li-O2 batteries: Status and perspectives[J]. Adv. Mater., 2018, 30(1):1704162.
[67] Zhang T, Liao K M, He P, Zhou H S. A self-defense redox mediator for efficient lithium-O2 batteries[J]. Energy Environ. Sci., 2016, 9(3):1024-1030.
[68] Cremasco L F, Anchieta C G, Nepel T C M, Miranda A N, Sousa B P, Rodella C B, Filho R M, Doubek G. Operando synchrotron XRD of bromide mediated Li-O2 battery[J]. ACS Appl. Mater. Interfaces, 2021, 13(11):13123-13131.
[69] Landa-Medrano I, Olivares-Marin M, Bergner B, Pinedo R, Sorrentino A, Pereiro E, de Larramendi I R, Janek J, Rojo T, Tonti D. Potassium salts as electrolyte additives in lithium-oxygen batteries[J]. J. Phys. Chem. C, 2017, 121(7):3822-3829.
[70] Olivares-Marin M, Sorrentino A, Pereiro E, Tonti D. Discharge products of ionic liquid-based Li-O2 batteries observed by energy dependent soft x-ray transmission microscopy[J]. J. Power Sources, 2017, 359:234-241.
[71] Yao K P C, Risch M, Sayed S Y, Lee Y L, Harding J R, Grimaud A, Pour N, Xu Z C, Zhou J G, Mansour A, Barde F, Shao-Horn Y. Solid-state activation of Li2O2 oxidation kinetics and implications for Li-O2 batteries[J]. Energy Environ. Sci., 2015, 8(8):2417-2426.
[72] Song M, Zhu D, Zhang L, Wang X F, Huang L H, Shi Q W, Mi R, Liu H, Mei J, Lau L W M, Chen Y G. Temperature dependence of charging characteristic of C-free Li2O2 cathode in Li-O2 battery[J]. J. Solid State Electro-chem., 2013, 17(7):2061-2069.
[73] Xu W, Viswanathan V V, Wang D Y, Towne S A, Xiao J, Nie Z M, Hu D H, Zhang J G. Investigation on the charging process of Li2O2-based air electrodes in Li-O2 batteries with organic carbonate electrolytes[J]. J. Power Sour-ces, 2011, 196(8):3894-3899.
[74] Wang H, Kou R H, Jin Q, Liu Y Z, Yin F X, Sun C J, Wang L, Ma Z Y, Ren Y, Liu N, Chen B H. Boosting the oxygen reduction performance via tuning the synergy between metal core and oxide shell of metal-organic frameworks-derived Co@CoOx[J]. Chemelectrochem, 2020, 7(7):1590-1597.
[75] Gao R, Zhou D, Ning D, Zhang W J, Huang L, Sun F, Schuck G, Schumacher G, Hu Z B, Liu X F. Probing the self-boosting catalysis of LiCoO2 in Li-O2 battery with multiple in situ/operando techniques[J]. Adv. Funct. Mater., 2020, 30(28):2002223.
[76] Su Z L, De Andrade V, Cretu S, Yin Y H, Wojcik M J, Franco A A, Demortiere A. X-ray nanocomputed tomography in zernike phase contrast for studying 3D morphology of Li-O2 battery electrode[J]. ACS Appl. Energy Mater., 2020, 3(5):4093-4102.
[77] Zhao C T, Liang J W, Li X N, Holmes N, Wang C H, Wang J, Zhao F P, Li S F, Sun Q, Yang X F, Liang J N, Lin X T, Li W H, Li R Y, Zhao S Q, Huang H, Zhang L, Lu S G, Sun X L. Halide-based solid-state electrolyte as an interfacial modifier for high performance solid-state Li-O2 batteries[J]. Nano Energy, 2020, 75:105036.
[78] Olivares-Marin M, Sorrentino A, Lee R C, Pereiro E, Wu N L, Tonti D. Spatial distributions of discharged products of lithium-oxygen batteries revealed by synchrotron X-ray transmission microscopy[J]. Nano Lett., 2015, 15(10):6932-6938.
[79] Younesi R, Urbonaite S, Edstrom K, Hahlin M. The cathode surface composition of a cycled Li-O2 battery: A photoelectron spectroscopy study[J]. J. Phys. Chem. C, 2012, 116(39):20673-20680.
[80] Sun B, Pompe C, Dongmo S, Zhang J Q, Kretschmer K, Schroder D, Janek J, Wang G X. Challenges for developing rechargeable room-temperature sodium oxygen batteries[J]. Adv. Mater. Technol., 2018, 3(9):1800110.
[81] Hartmann P, Bender C L, Vracar M, Durr A K, Garsuch A, Janek J, Adelhelm P. A rechargeable room-temperature sodium superoxide (NaO2) battery[J]. Nat. Mater., 2013, 12(3):228-232.
[82] Mekonnen Y S, Christensen R, Garcia-Lastra J M, Vegge T. Thermodynamic and kinetic limitations for peroxide and superoxide formation in Na-O2 batteries[J]. J. Phys. Chem. Lett., 2018, 9(15):4413-4419.
[83] Kim J, Lim H D, Gwon H, Kang K. Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes[J]. Phys. Chem. Chem. Phys., 2013, 15(10):3623-3629.
[84] Zhao S, Wang C C, Du D F, Li L, Chou S L, Li F J, Chen J. Bifunctional effects of cation additive on Na-O2 batteries[J]. Angew. Chem. Int. Ed., 2021, 60(6):3205-3211.
[85] Black R, Shyamsunder A, Adeli P, Kundu D, Murphy G K, Nazar L F. The nature and impact of side reactions in glyme-based sodium-oxygen batteries[J]. ChemSusChem, 2016, 9(14):1795-1803.
[86] Lin X T, Sun F, Sun Q, Wang S Z, Luo J, Zhao C T, Yang X F, Zhao Y, Wang C H, Li R Y, Sun X L. O2/O2- crossover- and dendrite-free hybrid solid-state Na-O2 batteries[J]. Chem. Mater., 2019, 31(21):9024-9031.
[87] Zhang Y T, Ma L P, Zhang L Q, Peng Z Q. Identifying a stable counter/reference electrode for the study of aprotic Na-O2 batteries[J]. J. Electrochem. Soc., 2016, 163(7):A1270-A1274.
[88] Zhu Y M, Yang F, Guo M H, Chen L, Gu M. Real-time imaging of the electrochemical process in Na-O2 nano-batteries using Pt@CNT and Pt0.8Ir0.2@CNT air cathodes[J]. ACS Nano, 2019, 13(12):14399-14407.
[89] Frith J T, Landa-Medrano I, de Larramendi I R, Rojo T, Owen J R, Garcia-Araez N. Improving Na-O2 batteries with redox mediators[J]. Chem. Commun., 2017, 53(88):12008-12011.
[90] Yang H, Sun J C, Wang H, Liang J, Li H X. A titanium dioxide nanoparticle sandwiched separator for Na-O2 batteries with suppressed dendrites and extended cycle life[J]. Chem. Commun., 2018, 54(32):4057-4060.
[91] Jia P, Yang T T, Liu Q N, Yan J T, Shen T D, Zhang L Q, Liu Y N, Zhao X X, Gao Z Y, Wang J, Tang Y F, Huang J Y. In-situ imaging Co3O4 catalyzed oxygen reduction and evolution reactions in a solid state Na-O2 battery[J]. Nano Energy, 2020, 77:105289.
[92] Shu C Z, Lin Y M, Zhang B S, Abd Hamid S B, Su D S. Mesoporous boron-doped onion-like carbon as long-life oxygen electrode for sodium-oxygen batteries[J]. J. Mater. Chem. A, 2016, 4(17):6610-6619.
[93] Wang J K, Gao R, Zheng L R, Chen Z J, Wu Z H, Sun L M, Hu Z B, Liu X F. CoO/CoP heterostructured nanosheets with an O-P interpenetrated interface as a bifunctional electrocatalyst for Na-O2 battery[J]. ACS Catal., 2018, 8(9):8953-8960.
[94] Jin X, Li Y Y, Zhang S, Zhang J W, Shen Z H, Zhong C L, Cai Z Q, Hu C Q, Zhang H G. Ru single atoms induce surface-mediated discharge in Na-O2 batteries[J]. Chin. Chem. Lett., 2021, 33(1):491-496.
[95] Yadegari H, Banis M N, Xiao B W, Sun Q, Li X, Lushington A, Wang B Q, Li R Y, Sham T K, Cui X Y, Sun X L. Three-dimensional nanostructured air electrode for sodium-oxygen batteries: A mechanism study toward the cyclability of the cell[J]. Chem. Mater., 2015, 27(8):3040-3047.
[96] Liu H J, Osenberg M, Ni L, Hilger A, Chen L B, Zhou D, Dong K, Arlt T, Yao X Y, Wang X G, Manke I, Sun F. Sodiophilic and conductive carbon cloth guides sodium dendrite-free Na metal electrodeposition[J]. J. Energ. Chem., 2021, 61:61-70.
[97] Ma M Y, Lu Y, Yan Z H, Chen J. In situ synjournal of a bismuth layer on a sodium metal anode for fast interfacial transport in sodium-oxygen batteries[J]. Batteries & Supercaps, 2019, 2(8):663-667.
[98] Luo W, Lin C F, Zhao O, Noked M, Zhang Y, Rubloff G W, Hu L B. Ultrathin surface coating enables the stable sodium metal anode[J]. Adv. Energy Mater., 2017, 7(2):1601526.
[99] Sun B, Li P, Zhang J Q, Wang D, Munroe P, Wang C Y, Notten P H L, Wang G X. Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries[J]. Adv. Mater., 2018, 30(29):1801334.
[100] Lin X T, Sun Q, Yadegari H, Yang X F, Zhao Y, Wang C H, Liang J N, Koo A, Li R Y, Sun X L. On the cycling performance of Na-O2 cells: Revealing the impact of the superoxide crossover toward the metallic Na electrode[J]. Adv. Funct. Mater., 2018, 28(35):1801904.
[101] Sun Q, Liu J, Xiao B W, Wang B O, Banis M, Yadegari H, Adair K R, Li R Y, Sun X L. Visualizing the oxidation mechanism and morphological evolution of the cubic-shaped superoxide discharge product in Na-air batteries[J]. Adv. Funct. Mater., 2019, 29(13):1808332.
[102] Morasch R, Kwabi D G, Tulodziecki M, Risch M, Zhang S Y, Yang S H. Insights into electrochemical oxidation of NaO2 in Na-O2 batteries via rotating ring disk and spectroscopic measurements[J]. ACS Appl. Mater. Inter-faces, 2017, 9(5):4374-4381.
[103] Schroder D, Bender C L, Osenberg M, Hilger A, Manke I, Janek J. Visualizing current-dependent morphology and distribution of discharge products in sodium-oxygen battery cathodes[J]. Sci. Rep., 2016, 6:24288.
[104] Landa-Medrano I, Sorrentino A, Stievano L, de Larramendi I R, Pereiro E, Lezama L, Rojo T, Tonti D. Architecture of Na-O2 battery deposits revealed by transmission X-ray microscopy[J]. Nano Energy, 2017, 37:224-231.
[105] Fu J, Cano Z P, Park M G, Yu A P, Fowler M, Chen Z W. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives[J]. Adv. Mater., 2017, 29(7):1604685.
[106] Lee C W, Sathiyanarayanan K, Eom S W, Kim H S, Yun M S. Effect of additives on the electrochemical behaviour of zinc anodes for zinc/air fuel cells[J]. J. Power Sources, 2006, 160(1):161-164.
[107] Shi X J, He B B, Zhao L, Gong Y S, Wang R, Wang H W. FeS2-CoS2 incorporated into nitrogen-doped carbon nanofibers to boost oxygen electrocatalysis for durable rechargeable Zn-air batteries[J]. J. Power Sources, 2021, 482:228955.
[108] Zhu J W, Li W Q, Li S H, Zhang J, Zhou H, Zhang C T, Zhang J A, Mu S C. Defective N/S-Codoped 3D cheese-like porous carbon nanomaterial toward efficient oxygen reduction and Zn-air batteries[J]. Small, 2018, 14(21):1800563.
[109] Guo L M, Deng J A, Wang G Z, Hao Y A, Bi K, Wang X H, Yang Y. N, P-doped CoS2 embedded in TiO2 nano-porous films for Zn-air batteries[J]. Adv. Funct. Mater., 2018, 28(42):1804540.
[110] Wang K K, Lin Z S, Tang Y, Tang Z H, Tao C L, Qin D D, Tian Y. Selenide/sulfide heterostructured NiCo2Se4/NiCoS4 for oxygen evolution reaction, hydrogen evolution reaction, water splitting and Zn-air batteries[J]. Ele-ctrochim. Acta, 2021, 368:137584.
[111] Song S D, Li W J, Deng Y P, Ruan Y L, Zhang Y N, Qin X H, Chen Z W. TiC supported amorphous MnOx as highly efficient bifunctional electrocatalyst for corrosion resistant oxygen electrode of Zn-air batteries[J]. Nano Energy, 2020, 67:104208.
[112] Christensen M K, Mathiesen J K, Simonsen S B, Norby P. Transformation and migration in secondary zin-cair batteries studied by in situ synchrotron X-ray diffraction and X-ray tomography[J]. J. Mater. Chem. A, 2019, 7(11):6459-6466.
[113] Yufit V, Tariq F, Eastwood D S, Biton M, Wu B, Lee P D, Brandon N P. Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries[J]. Joule, 2019, 3(2):485-502.
[114] Zhang C, Wang J M, Zhang L, Zhang J Q, Cao C N. Study of the performance of secondary alkaline pasted zinc electrodes[J]. J. Appl. Electrochem., 2001, 31(9):1049-1054.
[115] Wei X, Desai D, Yadav G G, Turney D E, Couzis A, Banerjee S. Impact of anode substrates on electrodeposited zinc over cycling in zinc-anode rechargeable alkaline batteries[J]. Electrochim. Acta, 2016, 212:603-613.
[116] Santos F, Abad J, Vila M, Castro G R, Urbina A, Romero A J F. In situ synchrotron X-ray diffraction study of Zn/Bi2O3 electrodes prior to and during discharge of Zn-air batteries: Influence on ZnO deposition[J]. Electrochim. Acta, 2018, 281:133-141.
[117] Yu J, Li B Q, Zhao C X, Liu J N, Zhang Q. Asymmetric air cathode design for enhanced interfacial electrocatalytic reactions in high-performance zinc-air batteries[J]. Adv. Mater., 2020, 32(12):1908488.
[118] Li B Q, Zhao C X, Chen S M, Liu J N, Chen X, Song L, Zhang Q. Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-air batteries[J]. Adv. Mater., 2019, 31(19):1900592.
[119] Pan Y, Liu S J, Sun K A, Chen X, Wang B, Wu K L, Cao X, Cheong W C, Shen R G, Han A J, Chen Z, Zheng L R, Luo J, Lin Y, Liu Y Q, Wang D S, Peng Q, Zhang Q, Chen C, Li Y D. A Bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-air batteries[J]. Angew. Chem. Int. Ed., 2018, 57(28):8614-8618.
[120] Yang L, Shi L, Wang D, Lv Y L, Cao D P. Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery[J]. Nano Energy, 2018, 50:691-698.
[121] Wang J, Liu W, Luo G, Li Z J, Zhao C, Zhang H R, Zhu M Z, Xu Q, Wang X Q, Zhao C M, Qu Y T, Yang Z K, Yao T, Li Y F, Lin Y, Wu Y, Li Y D. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction[J]. Energy Environ. Sci., 2018, 11(12):3375-3379.
[122] Han X P, Ling X F, Yu D S, Xie D Y, Li L L, Peng S J, Zhong C, Zhao N Q, Deng Y D, Hu W B. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution[J]. Adv. Mater., 2019, 31(49):1905622.
文章导航

/