欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

基于电化学分子探针合理设计的高选择性长程活体分析

  • 王越 ,
  • 张立敏 ,
  • 田阳
展开
  • 华东师范大学化学与分子工程学院,上海 200241

收稿日期: 2021-10-06

  修回日期: 2021-12-04

  网络出版日期: 2021-12-18

版权

《电化学》编辑部, 2022, 版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Rational Design of Electrochemical Molecular Probes for Highly Selective and Long-Term Measurement In Vivo

  • Yue Wang ,
  • Li-Min Zhang ,
  • Yang Tian
Expand
  • School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
*Tel: (86-21)54341041, E-mail: lmzhang@chem.ecnu.edu.cn;
ytian@chem.ecnu.edu.cn

Received date: 2021-10-06

  Revised date: 2021-12-04

  Online published: 2021-12-18

Copyright

, 2022, Copyright reserved © 2022

摘要

发展脑内化学物质的高选择性长期稳定的传感分析方法,对于准确获取脑生理病理过程的动力学信息,精准区分复杂的脑疾病分子机制具有重要的研究意义。本文从三个方面综述了基于新型电化学探针分子设计的脑内高选择性长程活体分析方面的研究进展:(1)通过设计并合成新型的O2·-、H2Sn、Ca2+、K+等的特异性有机分子探针,合理将特异性化学信号转换为高选择性的电化学信号,建立了系列高选择性的非电化学活性分子的活体电化学分析策略;(2)系统研究了传统Au-S键、Au-Se键、Au-C≡C键三种分子组装方式的界面电化学行为差异,优化并建立了基于Au-C≡C功能化的高稳定性电化学传感界面,发展了高选择性、长期稳定的Fe2+实时活体分析方法;(3)通过合理地将高稳定分子组装策略和抗生物污染界面相结合,制备了高选择性高稳定性的可逆型Ca2+微电极阵列,实现了脑中风模型下鼠脑中不同脑区Ca2+长达60天的实时追踪,以及癫痫模型下不同脑区四种离子(Ca2+、Na+、K+及pH)的动态实时成像及动力学分析。最后,该综述针对目前脑活体分析时神经递质、氨基酸等重要生理物质的多脑区实时分析的难点及移动清醒动物的无线传感分析策略进行了简要的展望。

本文引用格式

王越 , 张立敏 , 田阳 . 基于电化学分子探针合理设计的高选择性长程活体分析[J]. 电化学, 2022 , 28(3) : 2108451 . DOI: 10.13208/j.electrochem.210845

Abstract

Designing electrochemical interfaces for in vivo analysis of neurochemicals with high selectivity and long-term stability is vital for monitoring dynamic variation and dissecting the complex mechanisms of pathogenesis in living animals. This review focuses on the development of electrochemical interfaces based on rational design of molecular probes for in vivo measurement with high selectivity and high stability from three aspects: (1) Specific recognition probes were rationally designed and created to remarkably improve the selectivity of in vivo analysis in a complicated brain environment. (2) The Au-C≡C functionalized surface was developed to remarkably enhance the stability of molecular assembly, and employed for real-time mapping and accurate quantification in the brains. (3) Combined with the Au-C≡C functionalized molecular probe, the new type anti-biofouling microfiber array was established to achieve long-term and real-time monitoring dynamic changes in the brain. At last, some perspectives are highlighted in the further development of the efficient electrochemical interfaces for in vivo detection in the brain.

参考文献

[1] Zhang M N, Yu P, Mao L Q. Rational design of surface/interface chemistry for quantitative in vivo monitoring of brain chemistry[J]. Acc. Chem. Res., 2012, 45(4):533-543.
[2] Zhang L M, Tian Y. Designing recognition molecules and tailoring functional surfaces for in vivo monitoring of small molecules in the brain[J]. Acc. Chem. Res., 2018, 51(3):688-696.
[3] Qiang Y, Artoni P, Seo K J, Culaclii S, Hogan V, Zhao X Y, Zhong Y D, Han X, Wang p M, Lo Y K, Li Y M, Patel H A, Huang Y F, Sambangi A, Chu J S V, Liu W T, Fagiolini M. Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain[J]. Sci. Adv., 2018, 4(9): eaat0626.
[4] Tsai D, Sawyer D, Bradd A, Yuste R, Shepard K L. A very large-scale microelectrode array for cellular-resolution electrophysiology[J]. Nat. Commun., 2017, 8:1802.
[5] Zhu W Y, Gu C Y, Dunevall J, Ren L, Zhou X M, Ewing A G. Combined amperometry and electrochemical cytometry reveal differential effects of cocaine and methylphen-idate on exocytosis and the fraction of chemical release[J]. Angew. Chem. Int. Ed., 2019, 58(13):4238-4242.
[6] Liu Y L, Huang W H. Stretchable electrochemical sensors for cell and tissue detection[J]. Angew. Chem. Int. Ed., 2021, 60(6):2757-2767.
[7] Kubota R, Sasaki Y, Minamiki T, Minami T. Chemical sensing platforms based on organic thin-film transistors functionalized with artificial receptors[J]. ACS Sens., 2019, 4(10):2571-2587.
[8] Li L P, Liu W Y, Dong H Y, Gui Q Y, Hu Z Q, Li Y Y, Liu J P. Surface and interface engineering of nanoarrays toward advanced electrodes and electrochemical energy storage devices[J]. Adv. Mater., 2021, 33(13):2004959.
[9] Chai X L, Zhou X G, Zhu A W, Zhang L M, Qin Y, Shi G Y, Tian Y. A two-channel ratiometric electrochemical biosensor for in vivo monitoring of copper ions in a rat brain using gold truncated octahedral microcages[J]. An-gew. Chem. Int. Ed., 2013, 52(31):8129-8133.
[10] Zhou J, Zhang L M, Tian Y. Micro electrochemical pH sensor applicable for real-time ratiometric monitoring of pH values in rat brains[J]. Anal. Chem., 2016, 88(4):2113-2118.
[11] Zhou J, Liao C A, Zhang L M, Wang Q G, Tian Y. Mole-cular hydrogel-stabilized enzyme with facilitated electron transfer for determination of H2O2 released from live cells[J]. Anal. Chem., 2014, 86(9):4395-4401.
[12] Liu H Q, Tian Y, Xia P P. Pyramidal, rodlike, spherical gold nanostructures for direct electron transfer of copper, zinc-superoxide dismutase: application to superoxide anion biosensors[J]. Langmuir, 2008, 24(12):6359-6366.
[13] Li X G, Liu Y, Zhu A W, Luo Y P, Deng Z F, Tian Y. Real-time electrochemical monitoring of cellular H2O2 integrated with in situ selective cultivation of living cells based on dual functional protein microarrays at Au-TiO2 surfaces[J]. Anal. Chem., 2010, 82(15):6512-6518.
[14] Deng Z F, Rui Q, Yin X, Liu H Q, Tian Y. In vivo detection of superoxide anion in bean sprout based on ZnO nanodisks with facilitated activity for direct electron transfer of superoxide dismutase[J]. Anal. Chem., 2008, 80(15):5839-5846.
[15] Wang Z, Liu D, Gu H, Zhu A W, Tian Y, Shi G Y. NTA-modified carbon electrode as a general relaying substrate to facilitate electron transfer of SOD: application to in vivo monitoring of O2·- in a rat brain[J]. Biosens. Bioelectron., 2013, 43:101-107.
[16] Jiang Y M, Xiao X, Li C C, Luo Y, Chen S, Shi G Y, Han K, Gu H. Facile ratiometric electrochemical sensor for in vivo/online repetitive measurements of cerebral ascorbic acid in brain microdiaysate[J]. Anal. Chem., 2020, 92(5):3981-3989.
[17] Jo A, Do H, Jhon G J, Suh M, Lee Y. Electrochemical nanosensor for real-time direct imaging of nitric oxide in living brain[J]. Anal. Chem., 2011, 83(21):8314-8319.
[18] Li S, Zhu A W, Zhu T, Zhang J Z H, Tian Y. Single bio-sensor for simultaneous quantification of glucose and pH in a rat brain of diabetic model using both current and potential outputs[J]. Anal. Chem., 2017, 89(12):6656-6662.
[19] Shao X L, Gu H, Wang Z, Chai X L, Tian Y, Shi G Y. Highly selective electrochemical strategy for monitoring of cerebral Cu2+ based on a carbon dot-TPEA hybridized surface[J]. Anal. Chem. 2013, 85(1):418-425.
[20] Xiao T F, Wu F, Hao J, Zhang M N, Yu P, Mao L Q. In vivo analysis with electrochemical sensors and biosensors[J]. Anal. Chem., 2017, 89(1):300-313.
[21] Liu W, Dong H, Zhang L M, Tian Y. Development of an efficient biosensor for the in vivo monitoring of Cu+ and pH in the brain: rational design and synjournal of recognition molecules[J]. Angew. Chem. Int. Ed., 2017, 56(51):16328-16332.
[22] Luo Y P, Zhang L M, Liu W, Yu Y Y, Tian Y. A single biosensor for evaluating the levels of copper ion and L-cysteine in a live rat brain with Alzheimer's Disease[J]. Angew. Chem. Int. Ed., 2015, 54(47):14053-14056.
[23] Liu L, Zhao F, Liu W, Zhu T, Zhang J Z H, Chen C, Dai Z H, Peng H S, Huang J L, Hu Q, Bu W B, Tian Y. An electrochemical biosensor with dual signal outputs: toward simultaneous quantification of pH and O2 in the brain upon ischemia and in a tumor during cancer starvation therapy[J]. Angew. Chem. Int. Ed., 2017, 56(35):10471-10475.
[24] Dong H, Zhou Q, Zhang L M, Tian Y. Rational design of specific recognition molecules for simultaneously monitoring of endogenous polysulfide and hydrogen sulfide in the mouse brain[J]. Angew. Chem. Int. Ed., 2019, 58(39):13948-13953.
[25] Zhao F, Liu Y D, Dong H, Feng S Q, Shi G Y, Lin L N, Tian Y. An electrochemophysiological microarray for real-time monitoring and quantification of multiple ions in the brain of a freely moving rat[J]. Angew. Chem. Int. Ed., 2020, 59(26):10426-10430.
[26] Liu Y D, Liu Z C, Zhao F, Tian Y. Long-term tracking and dynamically quantifying of reversible changes of extracellular Ca2+ in multiple brain regions of freely moving animals[J]. Angew. Chem. Int. Ed., 2021, 60(26):14429-14437.
[27] Hu B, Kong F P, Gao X N, Jiang L L, Li X F, Gao W, Xu K H, Tang B. Avoiding thiol compound interference: a nanoplatform based on high-fidelity Au-Se bonds for biological applications[J]. Angew. Chem. Int. Ed., 2018, 57(19):5306-5309.
[28] Hines T, Díez-Pérez I, Nakamura H, Shimazaki T, Asai Y, Tao N J. Controlling formation of single-molecule junctions by electrochemical reduction of diazonium terminal groups[J]. J. Am. Chem. Soc., 2013, 135(9):3319-3322.
[29] Liu X M, Xiao T F, Wu F, Shen M Y, Zhang M N, Yu H H, Mao L Q. Ultrathin cell-membrane-mimic phosphorylcholine polymer film coating enables large improvements for in vivo electrochemical detection[J]. Angew. Chem. Int. Ed., 2017, 56(39):11802-11806.
[30] Bhat A H, Dar K B, Anees S, Zargar M A, Masood A, Sofi M A, Ganie S A. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight[J]. Biomed. Pharmacother., 2015, 74:101-110.
[31] Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease[J]. Redox. Biol., 2018, 14:450-464.
[32] Rahman M A, Kothalam A, Choe E S, Won M S, Shim Y B. Stability and sensitivity enhanced electrochemical in vivo superoxide microbiosensor based on covalently co-immobilized lipid and cytochrome c[J]. Anal. Chem., 2012, 84(15):6654-6660.
[33] Tian Y, Mao L, Okajima T, Ohsaka T. Superoxide dismutase-based third-generation biosensor for superoxide anion[J]. Anal. Chem., 2002, 74(10):2428-2434.
[34] Deng Z F, Rui Q, Yin X, Liu H Q, Tian Y. In vivo detection of superoxide anion in bean sprout based on ZnO nanodisks with facilitated activity for direct electron transfer of superoxide dismutase[J]. Anal. Chem., 2008, 80(15):5839-5846.
[35] Chen X J J, West A C, Cropek D M, Banta S. Detection of the superoxide radical anion using various alkanethiol monolayers and immobilized cytochrome c[J]. Anal. Chem., 2008, 80(24):9622-9629.
[36] Huang S Q, Zhang L M, Dai L Y, Wang Y Y, Tian Y. Nonenzymatic electrochemical sensor with ratiometric signal output for selective determination of superoxide anion in rat brain[J]. Anal. Chem., 2021, 93(13):5570-5576.
[37] Yadav P K, Martinov M, Vitvitsky V, Seravalli J, Wedmann R, Filipovic M R, Banerjee R. Biosynjournal and reactivity of cysteine persulfides in signaling[J]. J. Am. Chem. Soc., 2016, 138(1):289-299.
[38] Mishanina A V, Libiad M, Banerjee R. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways[J]. Nat. Chem. Biol., 2015, 11(7):457-464.
[39] Yu B C, Zheng Y Q, Yuan Z N, Li S S, Zhu H, De la Cruz L K, Zhang J, Ji K L, Wang S M, Wang B H. Toward direct protein S-persulfidation: a prodrug approach that directly delivers hydrogen persulfide[J]. J. Am. Chem. Soc., 2018, 140(1):30-33.
[40] Wang S J, Liu X M, Zhang M N. Reduction of amminer-uthenium(III) by sulfide enables in vivo electrochemical monitoring of free endogenous hydrogen sulfide[J]. Anal. Chem., 2017, 89(10):5382-5388.
[41] Zhang C P, Liu Z C, Zhang L M, Zhu A M, Liao F M, Wan J J, Zhou J, Tian Y. A robust Au-C≡C functionalized surface: toward real-time mapping and accurate quantification of Fe2+ in the brains of live AD mouse models[J]. Angew. Chem. Int. Ed., 2020, 59(46):20499-20507.
[42] Li X C, Ren L, Dunevall J, Ye D X, White H S, Edwards M A, Ewing A G. Nanopore opening at flat and nanotip conical electrodes during vesicle impact electrochemical cytometry[J]. ACS Nano, 2018, 12(3):3010-3019.
文章导航

/