碳层网络促进Sn/SnO2纳米颗粒选择性CO2还原
收稿日期: 2021-10-06
修回日期: 2021-10-18
网络出版日期: 2021-10-21
版权
Selective CO2 Reduction to Formate on Heterostructured Sn/SnO2 Nanoparticles Promoted by Carbon Layer Networks
Received date: 2021-10-06
Revised date: 2021-10-18
Online published: 2021-10-21
Copyright
在各类CO2还原电催化剂中,锡基材料获得了研究人员的广泛关注,但其总体催化性能仍然受催化剂电极的组成,形貌和结构的限制。在本研究中,我们利用Sn低熔点(m.p. 232oC)的特性,在聚多巴胺碳化的同时实现Sn的熔化与再结晶,合成了由氮掺杂碳层网络分散的异质结构Sn/SnO2纳米颗粒自支撑电极(Sn/SnO2@NC)。氮掺杂碳层网络有利于电子的富集,可提高催化剂电极的导电性,防止超细纳米粒子的团聚,并保护其不在电解液中溶解。在CO2饱和的0.5 mol·L-1 NaHCO3水溶液中,所制备Sn/SnO2@NC电极与没有碳层网络包覆的电极相比,其CO2还原催化性能得到了很大的提高。该Sn/SnO2@NC电极在-0.9 V(vs. RHE)的电解电压下,电流密度为17 mA·cm-2,甲酸盐产物的选择性为83%。通过偶联该CO2还原催化电极与商品化RuO2催化剂作为水氧化阳极,可实现持续的CO2/H2O电解。此外,以Sn/SnO2@NC为阴极,Zn箔为阳极,我们还构建了可充放电的水系Zn-CO2电池。该电池的输出开路电压为1.35 V,峰值功率密度为0.9 mW·cm-2。本研究为高性能CO2还原催化剂的设计提供了新的思路,同时可充放电Zn-CO2电池的构建为绿色能源转换和存储系统提供了新的方案。
滕雪 , 牛艳丽 , 巩帅奇 , 刘璇 , 陈作锋 . 碳层网络促进Sn/SnO2纳米颗粒选择性CO2还原[J]. 电化学, 2022 , 28(2) : 2108441 . DOI: 10.13208/j.electrochem.210844
Tin (Sn)-based materials have emerged as promising electrocatalysts for selective reduction of CO2 to formate, but their overall performances are still limited by electrode structures which govern the accessibility to active sites, the electron transfer kinetics, and the catalytic stability. In this study, the heterostructured Sn/SnO2 nanoparticles dispersed by N-doped carbon layer networks (Sn/SnO2@NC) were synthesized by a melt-recrystallization method taking the low melting point of Sn (m.p. 232oC). The N-doped carbon layer networks derived from polydopamine could attract more electrons on the electrocatalyst, serve as conductive agents and protect the ultrafine nanoparticles from agglomeration and dissolution. The Sn/SnO2@NC electrode exhibited the greatly enhanced performance for CO2 reduction to formate in CO2-saturated 0.5 mol·L-1 aqueous NaHCO3 solution, showing a selectivity of 83% at only -0.9 V vs. RHE with a sustained current density of 17 mA·cm-2 for extended periods. By coupling the catalytic electrode with a commercially available RuO2 catalyst as the anode, the long-term CO2/H2O splitting has been achieved. Furthermore, a rechargeable aqueous Zn-CO2 battery with Sn/SnO2@NC as the cathode and Zn foil as the anode was constructed. It could output electric energy with an open circuit voltage of 1.35 V and a peak power density of 0.9 mW·cm-2.
[1] | Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen B A, Haasch R, Abiade J, Yarin A L, Salehi-Khojin A. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction[J]. Nat. Commun., 2013, 4:1-8. |
[2] | Mikkelsen M, Jørgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide[J]. Energy Environ. Sci., 2010, 3:43-81. |
[3] | Zheng X, Han J, Fu Y, Deng Y, Liu Y, Yang Y, Wang T, Zhang L. Highly efficient CO2 reduction on ordered porous Cu electrode derived from Cu2O inverse opals[J]. Nano Energy, 2018, 48:93-100. |
[4] | Yang H B, Hung S F, Liu S, Yuan K, Miao S, Zhang L, Huang X, Wang H Y, Cai W, Chen R, Gao J, Yang X, Chen W, Huang Y, Chen H M, Li C M, Zhang T, Liu B. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction[J]. Nat. Energy, 2018, 3:140-147. |
[5] | Li F, Chen L, Knowles G P, MacFarlane D R, Zhang J. Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity[J]. Angew. Chem. Int. Ed., 2017, 56:505-509. |
[6] | Zhang L, Zhao Z J, Gong J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms[J]. Angew. Chem. Int. Ed., 2017, 56:11326-11353. |
[7] | Duan X, Xu J, Wei Z, Ma J, Guo S, Wang S, Liu H, Dou S. Metal-free carbon materials for CO2 electrochemical reduction[J]. Adv. Mater., 2017, 29:1701784. |
[8] | Zhang R, Lv W, Lei L. Role of the oxide layer on Sn electrode in electrochemical reduction of CO2 to formate[J]. Appl. Surf. Sci., 2015, 356:24-29. |
[9] | Kas R, Kortlever R, Milbrat A, Koper M T, Mul G, Baltrusaitis J. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons[J]. Phys. Chem. Chem. Phys., 2014, 16:12194-12201. |
[10] | Joo F. Breakthroughs in hydrogen storage-formic Acid as a sustainable storage material for hydrogen[J]. ChemSusChem, 2008, 1:805-808. |
[11] | Grasemann M, Laurenczy G. Formic acid as a hydrogen source - recent developments and future trends[J]. Energy Environ. Sci., 2012, 5:8171. |
[12] | Tian Y, Li D, Li C, Liu J, Wu J, Liu G, Feng Y. Self-driving CO2-to-formate electro-conversion on Bi film electrode in novel microbial reverse-electrodialysis CO2 reduction cell[J]. Chem. Eng. J., 2021, 414:128671. |
[13] | Han N, Wang Y, Deng J, Zhou J, Wu Y, Yang H, Ding P, Li Y. Self-templated synjournal of hierarchical mesoporous SnO2 nanosheets for selective CO2 reduction[J]. J. Mater. Chem. A, 2019, 7:1267-1272. |
[14] | Kortlever R, Peters I, Koper S, Koper M T M. Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon-supported bimetallic Pd-Pt nanoparticles[J]. ACS Catal., 2015, 5:3916-3923. |
[15] | Wen G, Lee D U, Ren B, Hassan F M, Jiang G, Cano Z P, Gostick J, Croiset E, Bai Z, Yang L, Chen Z. Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production[J]. Adv. Energy Mater., 2018, 8:1802427. |
[16] | Zhao C, Wang J, Goodenough J B. Comparison of electrocatalytic reduction of CO2 to HCOOH with different tin oxides on carbon nanotubes[J]. Electrochem. Commun., 2016, 65:9-13. |
[17] | Fang M, Zheng Z, Chen J, Chen Q, Liu D, Xu B, Wu J, Kuang Q, Xie Z. Surface structure-dependent electrocatalytic reduction of CO2 to C1 products on SnO2 catalysts[J]. Sustain. Energ. Fuels, 2020, 4:600-606. |
[18] | An X, Li S, Yoshida A, Wang Z, Hao X, Abudula A, Guan G. Electrodeposition of tin-based electrocatalysts with different surface tin species distributions for electrochemical reduction of CO2 to HCOOH[J]. ACS Sustain. Chem. Eng., 2019, 7:9360-9368. |
[19] | Wu J, Bai X, Ren Z, Du S, Song Z, Zhao L, Liu B, Wang G, Fu H. Multivalent Sn species synergistically favours the CO2-into-HCOOH conversion[J]. Nano Res., 2020, 14:1053-1060. |
[20] | Lai J, Li S, Wu F, Saqib M, Luque R, Xu G. Unprecedented metal-free 3D porous carbonaceous electrodes for full water splitting[J]. Energy Environ. Sci., 2016, 9:1210-1214. |
[21] | Liu S, Xiao J, Lu X F, Wang J, Wang X, Lou X W D. Efficient electrochemical reduction of CO2 to HCOOH over sub-2 nm SnO2 quantum wires with exposed grain boun-daries[J]. Angew. Chem. Int. Ed., 2019, 58:8499-8503. |
[22] | Deng W, Zhang L, Li L, Chen S, Hu C, Zhao Z J, Wang T, Gong J. Crucial role of surface hydroxyls on the activity and stability in electrochemical CO2 reduction[J]. J. Am. Chem. Soc., 2019, 141:2911-2915. |
[23] | Ye K, Zhou Z, Shao J, Lin L, Gao D, Ta N, Si R, Wang G, Bao X. In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction[J]. Angew. Chem. Int. Ed., 2020, 132:4844-4851. |
[24] | Zhang A, He R, Li H, Chen Y, Kong T, Li K, Ju H, Zhu J, Zhu W, Zeng J. Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction[J]. Angew. Chem. Int. Ed., 2018, 57:10954-10958. |
[25] | Zhang G, Huang X, Ma X, Liu Y, Ying Y, Guo X, Fu N, Yu F, Wu H, Zhu Y, Huang H. A fast and general approach to produce a carbon coated Janus metal/oxide hybrid for catalytic water splitting[J]. J. Mater. Chem. A, 2021, 9:7606-7616. |
[26] | Shi J, Qiu F, Yuan W, Guo M, Lu Z H. Nitrogen-doped carbon-decorated yolk-shell CoP@FeCoP micro-polyhedra derived from MOF for efficient overall water splitting[J]. Chem. Eng. J., 2021, 403:126312. |
[27] | Han Y, Chen X, Qian C, Zhang X, He W, Ren H, Li H, Diao G, Chen M. Co0.85Se nanoparticles armored by N-doped carbon layer with electronic structure regulation functions: an efficient oxygen evolution electrocatalyst[J]. Chem. Eng. J., 2021, 420:130461. |
[28] | Liu Z, Tang B, Gu X, Liu H, Feng L. Selective structure transformation for NiFe/NiFe2O4 embedded porous nitrogen-doped carbon nanosphere with improved oxygen evolution reaction activity[J]. Chem. Eng. J., 2020, 395:125170. |
[29] | Tian J, Wang M, Shen M, Ma X, Hua Z, Zhang L, Shi J. Highly efficient and selective CO2 electro-reduction to HCOOH on Sn particle-decorated polymeric carbon nitride[J]. ChemSusChem, 2020, 13:6442-6448. |
[30] | Ren X, Ren Z, Li Q, Wen W, Li X, Chen Y, Xie L, Zhang L, Zhu D, Gao B, Chu P K, Huo K. Tailored plum pudding-like Co2P/Sn encapsulated with carbon nanobox shell as superior anode materials for high-performance sodium-ion capacitors[J]. Adv. Energy Mater., 2019, 9:1900091. |
[31] | Kuang X, Liu T, Zeng W, Peng X, Wang Z. Hydrothermal synjournal and characterization of novel Sn2O3 hierarchical nanostructures[J]. Mater. Lett., 2016, 165:235-238. |
[32] | Qian Y, An T, Birgersson K E, Liu Z, Zhao D. Web-like interconnected carbon networks from NaCl-assisted pyrolysis of ZIF-8 for highly efficient oxygen reduction catalysis[J]. Small, 2018, 14:1704169. |
[33] | Wang H, Maiyalagan T, Wang X. Review on recent pro-gress in nitrogen-doped graphene: synjournal, characterization, and its potential applications[J]. ACS Catal., 2012, 2:781-794. |
[34] | Liu S, Pang F, Zhang Q, Guo R, Wang Z, Wang Y, Zhang W, Ou J. Stable nanoporous Sn/SnO2 composites for efficient electroreduction of CO2 to formate over wide potential range[J]. Appl. Mater. Today, 2018, 13:135-143. |
[35] | Niu Y, Teng X, Gong S, Chen Z. A bimetallic alloy anchored on biomass-derived porous N-doped carbon fibers as a self-supporting bifunctional oxygen electrocatalyst for flexible Zn-air batteries[J]. J. Mater. Chem. A, 2020, 8:13725-13734. |
[36] | Zhang Y, Deng Y P, Wang J, Jiang Y, Cui G, Shui L, Yu A, Wang X, Chen Z. Recent progress on flexible Zn-air batteries[J]. Energy Storage Mater., 2021, 35:538-549. |
[37] | Urbain F, Tang P, Carretero N M, Andreu T, Gerling L G, Voz C, Arbiol J, Morante J R. A prototype reactor for highly selective solar-driven CO2 reduction to synjournal gas using nanosized earth-abundant catalysts and silicon photovoltaics[J]. Energy Environ. Sci., 2017, 10:2256-2266. |
/
〈 |
|
〉 |