乙二醇氧化在不同电位区间下的电极负载量的优化
收稿日期: 2021-08-04
修回日期: 2021-09-04
网络出版日期: 2021-09-22
版权
Mass Loading Optimization for Ethylene Glycol Oxidation at Different Potential Regions
Received date: 2021-08-04
Revised date: 2021-09-04
Online published: 2021-09-22
Copyright
由于近年来在电化学能源转化、存储及高附加值化学品电合成上的兴趣,设计与制备电催化剂受到越来越多的关注。活性是电催化剂关键参数之一,但观测到的活性会受到催化剂负载量的影响。本工作中,我们采用Co3O4/石墨纸(Co3O4/GPE)电极作为电极模型,通过循环伏安法和计时电位法展示Co3O4的负载量是如何影响乙二醇在碱性溶液(KOH)中氧化的。基于对氧化还原峰和双电层电容的分析可以得出增加催化剂负载量可以增加电化学活性位点数,也可以在低的氧化电位下促进乙二醇氧化,但在高的电位下并没有明显的促进作用。这个结果提供了对有机小分子电催化剂负载量优化的一些思考。
孙圣男 , 徐梽川 . 乙二醇氧化在不同电位区间下的电极负载量的优化[J]. 电化学, 2022 , 28(2) : 2108411 . DOI: 10.13208/j.electrochem.210841
Designing and fabricating the electrocatalysts is attracting more and more attention in recent years due to a global interest in developing techniques for electrochemical energy conversion and storage, as well as elelectro-synthesis of valuable chemicals. The activity is one of the key performance parameters for electrocatalysts, while the observed activity can be affected by mass loading of electrocatalysts. Here, we take cobalt oxide (Co3O4)/graphite paper electrode (Co3O4/GPE) as a model electrode to demon-strate how the mass loading of Co3O4 catalyst influences ethylene glycol (EG) oxidation in alkaline (KOH) by cyclic votammetry (CV) and chronopentiometry (CP) approaches. Analyses from redox peaks and double layer capacitances reveal that increasing the mass loading provided more electrochemical active sites. Increasing loading made a positive contribution to EG oxidation at the low oxidation potential, while less significant improvement at the high oxidation potential. The results will provide some insight for optimzing the mass loading of electrocatalysts for electrocatalysis of small organic molecules.
[1] | Wu T Z, Sun S N, Song J J, Xi S B, Du Y H, Chen B, Sasangka W A, Liao H B, Gan C L, Scherer G G, Zeng L, Wang H J, Li H, Grimaud A, Xu Z J. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation[J]. Nat. Catal., 2019, 2(9):763-772. |
[2] | Lü C D, Zhong L X, Liu H J, Fang Z W, Yan C S, Chen M X, Kong Y, Lee C, Liu D B, Li S Z, Liu J W, Li S, Chen G, Yan Q Y, Yu G H. Selective electrocatalytic synjournal of urea with nitrate and carbon dioxide[J]. Nat. Sustain., 2021, 4(10):868-876. |
[3] | Anantharaj S, Kundu S. Do the evaluation parameters reflect intrinsic activity of electrocatalysts in electrochemical water splitting?[J]. ACS Energy Lett., 2019, 4(6):1260-1264. |
[4] | Yu L, Sun S, Li H Y, Xu Z J. Effects of catalyst mass loading on electrocatalytic activity: an example of oxygen evolution reaction[J]. Fundamental Research, 2021, 1(4):448-452. |
[5] | Sun S N, Li H Y, Xu Z C J. Impact of surface area in evaluation of catalyst activity[J]. Joule, 2018, 2(6):1024-1027. |
[6] | Chong L, Wen J G, Kubal J, Sen F G, Zou J X, Greeley J, Chan M, Barkholtz H, Ding W J, Liu D J. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks[J]. Science, 2018, 362(6420):1276-1281. |
[7] | Sun S N, Sun Y M, Zhou Y, Xi S B, Ren X, Huang B C, Liao H B, Wang L Y P, Du Y H, Xu Z C. Shifting oxygen charge towards octahedral metal: a way to promote water oxidation on cobalt spinel oxides[J]. Angew. Chem. Int. Ed., 2019, 58(18):6042-6047. |
[8] | Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principle[J]. Science, 2011, 334(6061):1383-1385. |
[9] | Wei C, Xu Z C J. The possible implications of magnetic field effect on understanding the reactant of water splitting[J]. Chinese J. Catal., 2021, 43(1):148-157. |
[10] | Sun S N, Sun L B, Xi S B, Du Y H, Prathap MUA, Wang Z L, Zhang Q C, Fisher A, Xu Z C J. Electrochemical oxidation of C3 saturated alcohols on Co3O4 in alkaline[J]. Electrochim. Acta, 2017, 228:183-194. |
[11] | Xie R C, Batchelor-McAuley C, Rauwel E, Rauwel P, Compton R G. Electrochemical characterisation of Co@Co(OH)2 core-shell nanoparticles and their aggregation in solution[J]. ChemElectroChem, 2020, 7(20):4259-4268. |
[12] | Xiao Z H, Huang Y C, Dong C L, Xie C, Liu Z J, Du S Q, Chen W, Yan D F, Tao L, Shu Z W, Zhang G H, Duan H G, Wang Y Y, Zou Y Q, Chen R, Wang S Y. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2020, 142(28):12087-12095. |
[13] | Augustyn V, Come J, Lowe M A, Kim J W, Taberna P L, Tolbert S H, Abruña H D, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nat. Mater., 2013, 12(6):518-522. |
[14] | Dai C, Chan C W I, Barrow W, Smith A, Song P, Potier F, Wadhawan J D, Fisher A C, Lawrence N S. A route to unbuffered pH monitoring: a novel electrochemical approach[J]. Electrochim. Acta, 2016, 190:879-886. |
[15] | Li Z, Gadipelli S, Li H, Howard C A, Brett D J L, Shearing P R, Guo Z, Parkin I P, Li F. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage[J]. Nat. Energy, 2020, 5(2):160-168. |
[16] | Da Silva L M, De Faria L A, Boodts J F C. Determination of the morphology factor of oxide layers[J]. Electrochim. Acta, 2001, 47(3):395-403. |
[17] | Bard, A J, Faulkner L R. Electrochemical methods fundamentals and applications (Second edition)[M]. John Wiley & Sons, Inc., 2001: 102. |
/
〈 |
|
〉 |