欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

金属离子电池中的磁共振:从核磁共振(NMR)到电子顺磁共振(EPR)

  • 胡炳文 ,
  • 李超 ,
  • 耿福山 ,
  • 沈明
展开
  • 华东师范大学物理与电子科学学院,上海市磁共振重点实验室,上海200062

收稿日期: 2021-08-21

  修回日期: 2021-09-08

  网络出版日期: 2021-09-17

版权

《电化学》编辑部, 2022, 版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Magnetic Resonance in Metal-Ion Batteries: From NMR (Nuclear Magnetic Resonance) to EPR (Electron Paramagnetic Resonance)

  • Bing-Wen Hu ,
  • Chao Li ,
  • Fu-Shan Geng ,
  • Ming Shen
Expand
  • Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
*Tel: (86-21)62233633, E-mail: bwhu@phy.ecnu.edu.cn

Received date: 2021-08-21

  Revised date: 2021-09-08

  Online published: 2021-09-17

Copyright

, 2022, Copyright reserved © 2022

摘要

金属离子电池改变了我们的日常生活。金属离子电池里的电极材料研究是提高电池性能的关键。因此,深刻理解电极材料的结构-性能关系,有助于提高材料的能量密度和功率密度。磁共振,包括核磁共振(NMR)和电子顺磁共振(EPR),在过去的三十年中不断得到改进,并逐渐成为研究电极材料结构性能关系的重要技术之一。本文总结了我们课题组在几种有趣的电极材料上的磁共振研究进展,阐释了NMR和EPR在电极材料研究中的重要作用。本文将有助于把握磁共振技术对电池研究的重要价值,促进磁共振技术的进一步发展。

本文引用格式

胡炳文 , 李超 , 耿福山 , 沈明 . 金属离子电池中的磁共振:从核磁共振(NMR)到电子顺磁共振(EPR)[J]. 电化学, 2022 , 28(2) : 2108421 . DOI: 10.13208/j.electrochem.210842

Abstract

Metal-ion batteries have changed our quotidian lives. The research on the electrode materials for metal-ion battery is the key to improve the performance of the battery. Therefore, understanding the structure-performance relationship of the electrode materials can help to improve the energy density and power density of the materials. Magnetic resonance, including nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR), has been continuously improved during the past three decades, and has gradually become one of the important technologies to study the structure-performance relationship of electrode materials. This paper summarizes the progress of magnetic resonance research from our group on several interesting electrode materials and demonstrates the important role of NMR and EPR in the study of electrode materials. This article will help to grasp the important value of magnetic resonance technology for battery research, which will promote the further development of advance magnetic resonance technology.

参考文献

[1] Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries[J]. Nat. Rev. Mater., 2018,3(4):18013.
[2] Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: present and future[J]. Chem. Soc. Rev., 2017,46(12):3529-3614.
[3] Fang C, Huang Y H, Zhang W X, Han J T, Deng Z, Cao Y L, Yang H X. Routes to high energy cathodes of sodium-ion batteries[J]. Adv. Energy Mater., 2016,6(5):1501727.
[4] Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nat. Rev. Mater., 2016,1(4):16013.
[5] Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries[J]. Chem. Rev., 2014,114(23):11636-11682.
[6] Grey C P, Tarascon J M. Sustainability and in situ monitoring in battery development[J]. Nat. Mater., 2017,16(1):45-56.
[7] Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat. Chem., 2015,7(1):19-29.
[8] Goodenough J B. Evolution of strategies for modern rech-argeable batteries[J]. Acc. Chem. Res., 2013,46(5):1053-1061.
[9] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010,22(3):587-603.
[10] Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review[J]. Energy Environ. Sci., 2011,4(9):3243-3262.
[11] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008,451(7179):652-657.
[12] Liu D Q, Shadike Z, Lin R Q, Qian K, Li H, Li K K, Wang S W, Yu Q P, Liu M, Ganapathy S, Qin X Y, Yang Q H, Wagemaker M, Kang F Y, Yang X Q, Li B H. Review of recent development of in situ/operando characterization techniques for lithium battery research[J]. Adv. Mater., 2019,31(28):1806620.
[13] Pecher O, Carretero-González J, Griffith K J, Grey C P. Materials’ methods: NMR in battery research[J]. Chem. Mater., 2017,29(1):213-242.
[14] Nguyen H, Clément R J. Rechargeable batteries from the perspective of the electron spin[J]. ACS Energy Lett., 2020,5(12):3848-3859.
[15] Ilott A J, Mohammadi M, Schauerman C M, Ganter M J, Jerschow A. Rechargeable lithium-ion cell state of charge and defect detection by in-situ inside-out magnetic resonance imaging[J]. Nat. Commun., 2018,9(1):1776.
[16] Sathiya M, Leriche J B, Salager E, Gourier D, Tarascon J M, Vezin H. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries[J]. Nat. Commun., 2015,6(1):6276.
[17] Geng F S, Shen M, Hu B, Liu Y F, Zeng L C, Hu B W. Monitoring the evolution of local oxygen environments during LiCoO2 charging via ex situ17O NMR[J]. Chem. Commun., 2019,55(52):7550-7553.
[18] Freytag A I, Pauric A D, Krachkovskiy S A, Goward G R. In situ magic-angle spinning7Li NMR analysis of a full electrochemical lithium-ion battery using a jelly roll cell design[J]. J. Am. Chem. Soc., 2019,141(35):13758-13761.
[19] Shimoda K, Murakami M, Takamatsu D, Arai H, Uchimoto Y, Ogumi Z. In situ NMR observation of the lithium extraction/insertion from LiCoO2 cathode[J]. Electro-chim. Acta, 2013,108:343-349.
[20] Hu B, Lou X B, Li C, Geng F S, Zhao C, Wang J Y, Shen M, Hu B W. Reversible phase transition enabled by binary Ba and Ti-based surface modification for high voltage LiCoO2 cathode[J]. J. Power Sources, 2019,438:226954.
[21] Geng F S, Yang Q, Li C, Hu B, Zhao C, Shen M, Hu B W. Operando EPR and EPR imaging study on a NaCrO2 cathode: Electronic property and structural degradation with Cr dissolution[J]. J. Phys. Chem. Lett., 2021,12(2):781-786.
[22] Liao Y X, Li C, Lou X B, Hu X S, Ning Y Q, Yuan F Y, Chen B, Shen M, Hu B W. Carbon-coated Li3V2(PO4)3 derived from metal-organic framework as cathode for lithium-ion batteries with high stability[J]. Electrochim. Acta, 2018,271:608-616.
[23] Yin S C, Grondey H, Strobel P, Huang H, Nazar L F. Charge ordering in lithium vanadium phosphates: electrode materials for lithium-ion batteries[J]. J. Am. Chem. Soc., 2003,125(2):326-327.
[24] Li C, Lou X B, Shen M, Hu X S, Yan W S, Zou Y, Tong W M, Hu B W. High-capacity cobalt-based coordination polymer nanorods and their redox chemistry triggered by delocalization of electron spins[J]. Energy Storage Mater., 2017,7:195-202.
[25] Li C, Yang Q, Shen M, Ma J Y, Hu B W. The electrochemical Na intercalation/extraction mechanism of ultrathin cobalt(II) terephthalate-based MOF nanosheets revealed by synchrotron X-ray absorption spectroscopy[J]. Energy Storage Mater., 2018,14:82-89.
[26] Li C, Hu X S, Tong W, Yan W S, Lou X B, Shen M, Hu B W. Ultrathin manganese-based metal-organic framework nanosheets: Low-cost and energy-dense lithium storage anodes with the coexistence of metal and ligand redox activities[J]. ACS Appl. Mater. Interfaces, 2017,9(35):29829-19838.
[27] Li C, Lou X B, Yang Q, Zou Y M, Hu B W. Remarkable improvement in the lithium storage property of CO2(OH)2 BDC MOF by covalent stitching to graphene and the redox chemistry boosted by delocalized electron spins[J]. Chem. Eng. J., 2017,326:1000-1008.
[28] Li C, Shen M, Hu B, Lou X B, Zhang X, Tong W, Hu B W. High-energy nanostructured Na3V2(PO4)2O1.6F1.4 cathodes for sodium-ion batteries and a new insight into their redox chemistry[J]. J. Mater. Chem. A, 2018,6(18):8340-8348.
[29] Li C, Shen M, Lou X B, Hu B W. Unraveling the redox couples of V-III/V-IV mixed-valent Na3V2(PO4)2O1.6F1.4 cathode by parallel-mode EPR and in situ/ex situ NMR[J]. J. Phys. Chem. C, 2018,122(48):27224-27232.
[30] Park Y U, Seo D H, Kim B, Hong K P, Kim H, Lee S, Shakoor R A, Miyasaka K, Tarascon J M, Kang K. Tailoring a fluorophosphate as a novel 4 V cathode for lithium-ion batteries[J]. Sci. Rep., 2012,2:704.
[31] Qiu Q, Li C, Liu H, Liao Y X, Zhao C, Geng F S, Shen M, Li J X, Tong W, Hu B W. NMR evidence for the multielectron reaction mechanism of Na3V2(PO4)3 cathode and the impact of polyanion site substitution[J]. J. Phys. Chem. C, 2021,125(28):15200-15209.
[32] Li C, Zhao C, Hu B, Tong W, Shen M, Hu B W. Unraveling the critical role of Ti substitution in P2-NaxLiyMn1-yO2 cathodes for highly reversible oxygen redox chemistry[J]. Chem. Mater., 2020,32(3):1054-1063.
[33] Zhao C, Li C, Yang Q, Qiu Q, Tong W, Zheng S, Ma J Y, Shen M, Hu B W. Anionic redox reaction in Na-deficient layered oxide cathodes: Role of Sn/Zr substituents and in-depth local structural transformation revealed by solid-state NMR[J]. Energy Storage Mater., 2021,39:60-69.
[34] Geng F S, Hu B, Li C, Zhao C, Lafon O, Trébosc J, Am-oureux J P, Shen M, Hu B W. Anionic redox reactions and structural degradation in a cation-disordered rock-salt Li1.2Ti0.4Mn0.4O2 cathode material revealed by solid-state NMR and EPR[J]. J. Mater. Chem. A, 2020,8(32):16515-16526.
[35] Li C, Shen M, Hu B W. Solid-state NMR and EPR methods for metal ion battery research[J]. Acta Phys.-Chim. Sin., 2020,36(4): UNSP 1902019.
[36] Liu Y F, Zeng L C, Xu C C, Geng F S, Shen M, Yuan Q H, Hu B W. Optimizing the Ueff value for DFT+U calculation of paramagnetic solid-state NMR shifts by double Fermi-contact-shift verification[J]. Chem. Phys. Lett., 2019,736:136779.
[37] Pigliapochi R, Pell A J, Seymour I D, Grey C P, Ceresoli D, Kaupp M. DFT investigation of the effect of spin-orbit coupling on the NMR shifts in paramagnetic solids[J]. Phys. Rev. B, 2017,95:054412
[38] Hrobárik P, Reviakine R, Arbuznikov A V, Malkina O L, Malkin V G, K?hler F H, Kaupp M. Density functional calculations of NMR shielding tensors for paramagnetic systems with arbitrary spin multiplicity: Validation on 3d metallocenes[J]. J. Chem. Phys., 2007,126:024107.
[39] Pigliapochi R, Seymour I D, Merlet C, Pell A J, Murphy D T, Schmid S, Grey C P. Structural characterization of the Li-ion battery cathode materials LiTixMn2-xO4 (0.2 ≤ x ≤ 1.5): A combined experimental7Li NMR and first-principles study[J]. Chem. Mater., 2018,30(3):817-829.
[40] Middlemiss D S, Ilott A J, Clément R l J, Strobridge F C, Grey C P. Density functional theory-based bond pathway decompositions of hyperfine shifts: Equipping solid-state NMR to characterize atomic environments in paramagnetic materials[J]. Chem. Mater., 2013,25:1723-1734.
[41] Castets A, Carlier D, Zhang Y, Boucher F, Ménétrier M. A DFT-based analysis of the NMR fermi contact shifts in tavoritelike LiMPO4·OH and MPO4·H2O (M = Fe, Mn, V)[J]. J. Phys. Chem. C, 2012,116:18002-16014.
文章导航

/