Pt@BaSrTiO3纳米材料的制备及其光电化学合成氨性能的研究
收稿日期: 2021-06-16
修回日期: 2021-08-13
网络出版日期: 2021-08-24
基金资助
国家自然科学基金项目(21972027)
Preparation of Pt@BaSrTiO3 Nanostructure and Its Properties towards Photoelectrochemical Ammonia Synthesis
Received date: 2021-06-16
Revised date: 2021-08-13
Online published: 2021-08-24
氨是一种重要的工业原料,也是一种潜在的绿色能源,在环境条件下利用可再生能源将氮气还原合成氨是一种有吸引力的方法,但是开发高效光电化学合成氨的催化剂仍然是一个挑战。在此,采用两步法制备BaSrTiO3,并用管式炉煅烧将Pt纳米颗粒修饰在BaSrTiO3上制备Pt@BaSrTiO3。采用XRD、BET、XPS、SEM、TEM、UV-Vis和PL进行表征,分析所得催化剂的晶体结构、形貌和光学性能。研究BaSrTiO3和Pt@BaSrTiO3在常温常压下光电化学合成氨性能。结果表明Pt@BaSrTiO3在-0.3 V(vs. RHE)电位下合成氨的产率为26.57 × 10-8 mol·h-1·mg-1,是纯BaSrTiO3的2倍(13.12 × 10-8 mol·h-1·mg-1)。另外,Pt@BaSrTiO3作为催化剂在-0.3 V(vs. RHE)的法拉第效率为5.43%。通过在BaSrTiO3上修饰Pt,增加催化剂的活性位点。修饰Pt减小催化剂的带隙,可见光吸收范围增大。此外, Pt-BST异质结结构进一步增强电荷分离和转移,抑制电子-空穴对的复合从而提高电荷分离效率。这项工作为进一步设计钙钛矿催化剂来提高氨的产率提供了良好的思路。
张静 , 郭瑞霞 , 浮建军 , 尹诗斌 , 沈培康 , 张信义 . Pt@BaSrTiO3纳米材料的制备及其光电化学合成氨性能的研究[J]. 电化学, 2022 , 28(4) : 2106161 . DOI: 10.13208/j.electrochem.210616
Ammonia is an important industrial raw material and a potential green energy. Using renewable energy to convert nitrogen into ammonia under ambient condition is an attractive method. However, the development of efficient photoelectrochemical ammonia synthesis catalysts remains a challenge. Perovskite such as BaSrTiO3 (BST) is a good photocatalytic material. However, BST is active under ultraviolet light and has a high recombination rate of photogenerated electron-hole pairs. By dispersing precious metals, it can effectively regulate the absorption of sunlight by BST. In this work, we used a two-step method to prepare BST. The H2PtCl6·6H2O solution was dispersed on the BST, and then followed by calcination in a tube furnace to obtain Pt@BaSrTiO3 (Pt@BST). X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were utilized to analyze the structures, morphologies, and surface chemical composition of the synthesized materials. Results showed that the well-crystallized Pt particles were successfully loaded onto the BST surface, and Pt and BST interacted to produce a metal-semiconductor heterojunction, improving the performance of N2 reduction. The N2 adsorption and desorption isotherms showed that the increase in the specific surface area helped the catalyst to adsorb N2, and the contact area with H2O also increased, which promotes the occurrence of NRR and thus produces more NH3. UV-Vis and PL spectroscopic techniques were used to characterize and analyze optical properties of the obtained catalyst. It is indicated that decoration of Pt reduces the band gap of the catalyst and increases the visible light absorption range, in addition, further enhances the charge separation and transfer, inhibits the recombination of electron-hole pairs, and improves the efficiency of charge separation. The performances of BST and Pt@BST for photoelectric catalytic synthesis of ammonia under ambient condition were studied. The yield of ammonia first increased and then decreased with the increase of Pt content. When the Pt content was 4wt%, the yield was the highest. The results showed that the ammonia yield of Pt@BST was 26.57 × 10-8 mol·h-1·mg-1 and Faraday efficiency (FE) was 5.43% at -0.3 V (vs. RHE) in 0.1 mol·L-1 Na2SO4 under natural conditions, suggesting that the ammonia yield of Pt@BST was twice that of pure BST (13.12 × 10-8 mol·h-1·mg-1). We conducted control experiments of 15N2 isotope and Ar in order to eliminate internal and external environmental pollution. Confirming that the detected NH3 was produced exclusively via nitrogen reduction reaction. After recycling the test six times at -0.3 V (vs. RHE), both FE and ammonia yield rate showed a slight variation, indicating the high stability of Pt@BST during N2 reduction process. This work provides a simple strategy for further designing the preparation of noble metal modified perovskite catalysts, and has promising application prospects in ammonia synthesis under ambient condition.
Key words: ammonia synthesis; nitrogen reduction; Pt; BaSrTiO3
[1] | Ĉoriĉ I, Mercado B Q, Bill E, Vinyard D J, Holland P L. Binding of dinitrogen to an iron-sulfur-carbon site[J]. Nature, 2015, 526(7571): 96-99. |
[2] | Jia H P, Quadrelli E A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen[J]. Chem. Soc. Rev., 2014, 43(2): 547-564. |
[3] | Erisman J W, Sutton M A, Galloway J, Klimont Z, Winiwarter W. How a century of ammonia synthesis changed the world[J]. Nat Geosci, 2008, 1(10): 636-639. |
[4] | Lv X W, Weng C C, Yuan Z Y. Ambient ammonia electrosynthesis: Current status, challenges, and perspectives[J]. ChemSusChem, 2020, 13(12): 3061-3078. |
[5] | Liu H Z. Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge[J]. Chinese J. Catal., 2014, 35(10): 1619-1640. |
[6] | Wang W, Xu M G, Xu X M, Zhou W, Shao Z P. Perovskite oxide based electrodes for high-performance photoelectrochemical water splitting[J]. Angew. Chem. Int. Edit., 2020, 59(1): 136-152. |
[7] | Reddy C V, Reddy I N, Harish V V N, Reddy K R, Shetti N P, Shim J, Aminabhavi T M. Efficient removal of toxic organic dyes and photoelectrochemical properties of iron-doped zirconia nanoparticles[J]. Chemosphere, 2019, 239: 124766. |
[8] | Kumaravel V, Bartlett J, Pillai S C. Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products[J]. ACS Energy Lett., 2020, 5(2): 486-519. |
[9] | Reddy C V, Reddy I N, Akkinepally B, Reddy K R, Shim J. Synthesis and photoelectrochemical water oxidation of (Y, Cu) codoped α-Fe2O3 nanostructure photoanode[J]. J. Alloy Compd., 2020, 814: 152349. |
[10] | Liu D N, Wang J H, Bian S, Liu Q, Gao Y H, Wang X, Chu P K, Yu X F. Photoelectrochemical synthesis of ammonia with black phosphorus[J]. Adv. Funct. Mater., 2020, 30(24): 2002731. |
[11] | Vu M H, Nguyen C C, Do T O. Synergistic effect of Fe doping and plasmonic Au nanoparticles on W18O49 nano-rods for enhancing photoelectrochemical nitrogen reduction[J]. ACS Sustain. Chem. Eng., 2020, 8(32): 12321-12330. |
[12] | Li M X, Lu Q J, Liu M L, Yin P, Wu C Y, Li H T, Zhang Y Y, Yao S Z. Photoinduced charge separation via the double-electron transfer mechanism in nitrogen vacancies g-C3N5/BiOBr for the photoelectrochemical nitrogen reduction[J]. ACS Appl. Mater. Inter., 2020, 12(34): 38266-38274. |
[13] | Zhao J X, Zhang B P, Li Y, Yan L P, Wang S J. Optical and photocatalytic properties of TiO2/Ag-SiO2 nanocomposite thin films[J]. J. Alloy. Compd., 2012, 535: 21-26. |
[14] | Wang S J, Zhang B P. SPR propelled visible-active photo-catalysis on Au-dispersed Co3O4 films[J]. Appl. Catal. A-Gen., 2013, 467: 585-592. |
[15] | Ren C L, Yang B F, Wu M, Xu J, Fu Z P, Lv Y, Guo T, Zhao Y X, Zhu C Q. Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance[J]. J. Hazard. Mater., 2010, 182(1-3): 123-129. |
[16] | Horiuchi Y, Kamei G, Saito M, Matsuoka M. Development of ruthenium-loaded alkaline-earth titanates as catalysts for ammonia synthesis[J]. Chem. Lett., 2013, 42(10): 1282-1284. |
[17] | Huang B M, Liu Y, Pang Q, Zhang X Y, Wang H T, Shen P K. Boosting the photocatalytic activity of mesoporous SrTiO3 for nitrogen fixation through multiple defects and strain engineering[J]. J. Mater.Chem. A, 2020, 8(42): 22251-22256. |
[18] | Selmi A, Mascot M, Jomni F, Carru J C. Investigation of interfacial dead layers parameters in Au/Ba0.85Sr0.15TiO3/Pt capacitor devices[J]. J. Alloy. Compd., 2020, 826: 154048. |
[19] | Szafraniak B, Fušnik Ł, Xu J, Gao F, Brudnik A, Rydosz A. Semiconducting metal oxides: SrTiO3, BaTiO3 and BaSrTiO3 in gas-sensing applications: A review[J]. Coatings, 2021, 11(2): 185. |
[20] | Nadaud K, Borderon C, Gillard R, Fourn E, Renoud R, Gundel H W. Temperature stable BaSrTiO3 thin films suitable for microwave applications[J]. Thin Solid Films, 2015, 591: 90-96. |
[21] | Zhao Y X, Shi R, Bian X A, Zhou C, Zhao Y F, Zhang S, Wu F, Waterhouse G I N, Wu L Z, Tung C H, Zhang T R. Ammonia detection methods in photocatalytic and electrocatalytic experiments: How to improve the reliability of NH3 production rates?[J]. Adv. Sci., 2019, 6(8): 1802109. |
[22] | Andersen S Z, Ĉoriĉ V, Yang S, Schwalbe J A, Nielander A C, McEnaney J M, Enemark-Rasmussen K, Baker J G, Singh A R, Rohr B A, Statt M J, Blair S J, Mezzavilla S, Kibsgaard J, Vesborg P C K, Cargnello M, Bent S F, Jaramillo T F, Stephens I E L, Nørskov J K, Chorkendorff I. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements[J]. Nature, 2019, 570(7762): 504-508. |
[23] | Rodrigues A, Bauer S, Baumbach T. Effect of post-annealing on the chemical state and crystalline structure of PLD Ba0.5Sr0.5TiO3 films analyzed by combined synchrotron X-ray diffraction and X-ray photoelectron spectroscopy[J]. Ceram. Int., 2018, 44(13): 16017-16024. |
[24] | Liao J X, Yang C R, Tian Z, Yang H G, Jin L. The influence of post-annealing on the chemical structures and dielectric properties of the surface layer of Ba0.6Sr0.4TiO3-films[J]. J. Phys. D Appl. Phys., 2006, 39(11): 2473-2479. |
[25] | Bulushev D A, Yuranov I, Suvorova E I, Buffat P A, Kiwi-Minsker L. Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation[J]. J. Catal., 2004, 224(1): 8-17. |
[26] | Vovk E I, Kalinkin A V, Smirnov M Y, Klembovskii I O, Bukhtiyarov V I. XPS study of stability and reactivity of oxidized Pt nanoparticles supported on TiO2[J]. J. Phys. Chem. C, 2017, 121(32): 17297-17304. |
[27] | Li J J, Zhang M, Weng B, Chen J, Jia H P. Zero-degree photochemical synthesis of highly dispersed Pt/TiO2 for enhanced photocatalytic hydrogen generation[J]. J. Alloy Compd., 2020, 849: 156634. |
[28] | Vu M H, Sakar M, Hassanzadeh-Tabrizi S A, Do T O. Photo(electro)catalytic nitrogen fixation: Problems and possibilities[J]. Adv. Mater. Interfaces, 2019, 6(12): 1900091. |
/
〈 |
|
〉 |