欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

电解耦合臭氧化体系处理酸性废水的氧化效能

  • 胡泽友 ,
  • 项丰云 ,
  • 毛佶强 ,
  • 丁亚磊 ,
  • 童少平
展开
  • 1.浙江工业大学化学工程学院,绿色化学合成技术国家重点实验室培养基地,浙江 杭州 310014
    2.杭州诚洁环保有限公司,浙江 杭州 311228

收稿日期: 2021-04-19

  修回日期: 2021-05-25

  网络出版日期: 2021-08-13

版权

《电化学》编辑部, 2022, 版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Oxidative Efficiency of Ozonation Coupled with Electrolysis for Treatment of Acid Wastewater

  • Ze-You Hu ,
  • Feng-Yun Xiang ,
  • Ji-Qiang Mao ,
  • Ya-Lei Ding ,
  • Shao-Ping Tong
Expand
  • 1. College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
    2. Hangzhou Chengjie Environmental Protection Limited Corporation, Hangzhou 311228, Zhejiang, China
* E-mail: sptong@zjut.edu.cn

Received date: 2021-04-19

  Revised date: 2021-05-25

  Online published: 2021-08-13

Copyright

, 2022, Copyright reserved © 2022

摘要

建立能有效处理酸性废水的臭氧类高级氧化技术(AOPs-O3)是一个有待解决的难点。已有报道表明,臭氧氧化与电解结合(电解臭氧化,E-O3)可以有效降解中性溶液中的污染物。本文研究了E-O3在酸性溶液中降解乙酸(HAc,臭氧惰性物)的效率,发现E-O3在pH小于3时仍具有较高的氧化效率,如在pH为1.0时处理100 mg·L-1 乙酸溶液2小时后E-O3的效率达到52.2%,而相同条件下电解和臭氧氧化的效率分别只有2.2%和3.5%。尽管酸度增加会降低E-O3的氧化效率,但在pH等于0时其仍有相对较高的氧化效率。芳族化合物苯乙酮在pH等于1.0条件下也能被E-O3有效地降解并矿化。机理解析表明,溶解臭氧或氧气可以从阴极获得电子,从而产生高活性的氧化物种,如羟基自由基。在预处理了一种实际酸性废水中E-O3也具有较好的效率。本研究为酸性废水的有效(预)处理提供了一种新方法。

本文引用格式

胡泽友 , 项丰云 , 毛佶强 , 丁亚磊 , 童少平 . 电解耦合臭氧化体系处理酸性废水的氧化效能[J]. 电化学, 2022 , 28(1) : 2104191 . DOI: 10.13208/j.electrochem.210419

Abstract

Establishment of an ozone-based advanced oxidation process (AOPs-O3) for effective treatment of acid wastewater is an important and difficult task. The process of ozonation coupled with electrolysis (electrolysis-ozonation, E-O3) has been reported to effectively degrade pollutants in neutral solution. We studied the efficiency of E-O3 for degradation of acetic acid (HAc, an ozone inert chemical) in acid solution and found that E-O3 had high oxidative efficiency at pH less than 3. For example, 52.2% of 100 mg·L-1 HAc could be removed by E-O3 in 120 min at pH 1.0, but only 2.2% and 3.5% by electrolysis and ozonation, respectively. Although the efficiency of E-O3 decreased with the increase of acidity of solution, it still remained relatively high even at pH 0. An aromatic compound of acetophenone could also be effectively degraded by E-O3 at pH 1.0. The results indicate that electrons can transfer from cathode to dissolved ozone or oxygen in acidic solution, thus resulting in generation of reactive species, e.g. hydroxyl radicals. A real acidic wastewater was also effectively pretreated by E-O3. This study provides a promising AOPs-O3 for treatment of acid wastewaters.

参考文献

[1] Hunt A J. Vanadium-catalysed oxidative bromination using dilute mineral acids and hydrogen peroxide: An option for recycling waste acid streams[J]. Org. Process Res. dev., 2000, 4(4): 270-274.
[2] Hoigné J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water-I: ociating organic compounds[J]. Water. Res., 1983, 17(2): 173-183.
[3] Wang N, Tong Z, Zhang G, Peng W. A review on Fenton-like processes for organic wastewater treatment[J]. J. Environ. Chem. Eng., 2016, 4(1): 762-787.
[4] Neyens E, Baeyens J. A review of classic Fenton’s peroxidation as an advanced oxidation technique[J]. J. Hazard. Mater., 2003, 98(1): 33-50.
[5] Lü X Y, Jin G P, Yuan D K, Ding Y F, Long P X. Improving generation of H2O2 and OH at coppernhexacyanocobal-tate/graphene/ITO composite electrode for degradation of levofloxacin in photo-electro-Fenton process[J]. Environ. Sci. Pollut. Res., 2021, 5: 1-12.
[6] Wu J J, Wu C C, Ma H W, Chang C C. Treatment of landfill leachate by ozone-based advanced oxidation processes chemosphere[J]. Chemosphere, 2004, 54(7): 997-1003.
[7] Legube B, Leitner N. Catalytic ozonation: a promising advanced oxidation technology for water treatment[J]. Catal. Today, 1999, 53(1): 61-72.
[8] Esplugas S, Giménez, Contreras S, Pascual E, Rodriguez M. Comparison of different advanced oxidation processes for phenol degradation[J]. Water Res., 2002, 36(4): 1034-1042.
[9] Wang Q W, Shen T D, Tong S P. Effect of iron oxide promoted sulfated zirconia on the oxidative efficiency of H2O2/O3 for acetic acid degradation in strong acidic water[J]. Ind. Eng. Chem. Res., 2016, 55(46): 10513-10522.
[10] Goyal A, Srivastava V C, Kushwaha J P. Treatment of highly acidicwastewater containing high energetic compounds using dimensionally stable anode[J]. Chem. Eng. J., 2017, 325: 289-299.
[11] Kishimoto N, Morita Y, Tsuno H, Oomura T, Mizutani H. Advanced oxidation effect of ozonation combined with electrolysis[J]. Water Res., 2005, 39(19): 4661-4672.
[12] Yao W K, Rehman S W U, Wang H J, Yang H W, Yu G. Pilot-scale evaluation of micropollutant abatements by conventional ozonation, UV/O3, and an electro-peroxone process[J]. Water Res., 2018, 138: 106-117.
[13] Zheng H S, Guo W Q, Wu Q L, Ren N Q, Chang J S. Electro-peroxone pretreatment for enhanced simulated hospital wastewater treatment and antibiotic resistance genes reduction[J]. Environ. Int., 2018, 115: 70-78.
[14] Saylor G L, Chao Z, Kupferle M J. Synergistic enhancement of oxidative degradation of atrazine using combined electrolysis and ozonation[J]. J. Water. Process. Eng., 2018, 21: 154-162.
[15] Ding Y L, Wang C, Yin F, X, Wu G Q, Tong S P. Quantitative investigation of the synergistic effect of electrolysis combined with ozonation for degradation of nitrobenzene[J]. Ozone Sci. Eng., 2019, 41(4): 351-357.
[16] Kishimoto N, Nakagawa T, Asano M, Abe M, Yamada M, Ono Y. Ozonation combined with electrolysis of 1, 4-dioxane using a two-compartment electrolytic flow cell with solid electrolyte[J]. Water Res., 2008, 42(1-2): 379-385.
[17] Kishimoto N, Nakagawa T, Okada H, Mizutani H. Effect of separation of ozonation and electrolysis on effective use of ozone in ozone-electrolysis process[J]. Ozone Sci. Eng., 2011, 33(6): 463-469.
[18] Wu D, Zhang R, Lu G, Lin Q H, Liu F L, Li Y. Degradation of octocrylene using combined ozonation and electrolysis process: optimization by response surface metho-dology[J]. Clean - Soil. Air. Water, 2017, 45(2): 1500664.
[19] Helz G R, Zepp R G, Crosby D G. Aquatic and surface photochemistry[M]. Lewis Publishers., 1994.
[20] Hoigné J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water—III. Inorganic compounds and radicals[J]. Water Res., 1985, 17(8): 993-1004.
[21] State Environmental Protection Administration(国家环保总局). Water and wastewater monitoring and analysis methods (Fourth edition)[M]. China Environmental Science Press(中国环境科学出版社), 2002.
[22] Bader H, Hoigné J, Hoigné。 Determination of ozone in water by the indigo method[J]. Water Res., 2013, 15(4): 449-456.
[23] Sellers R M. Spectrophotometric determination of hydrogen peroxide using potassium titanium (IV) oxalate[J]. An-alyst, 1980, 105: 950-954.
[24] Zhou Q(周琦), Zhang R(张蓉), Wang X H(王勋华), Ma C A(马淳安), Tong S P(童少平). Oxidative efficiency of the system of electrolysis coupled ozonation[J]. Envir. Sci.(环境科学), 2010, 31(9): 2080-2084.
[25] Ding Y L, Wang J J, Xu S S, Lin K Y A, Tong S P. Oxy-gen vacancy of CeO2 improved efficiency of H2O2/O3 for the degradation of acetic acid in acidic solutions[J]. Sep. Purif. Technol., 2018, 207: 92-98.
[26] Chen Y, Peng R F, Shen T D, Tong S P, Ma C A. promising ozone-based advanced oxidation process for effective generation of hydroxyl radicals in acidic solution[J]. Sep. Purif. Technol., 2015, 151(2): 269-275.
[27] Tomiyasu H, Fukutomi H, Gordon G. Kinetics and mechanism of ozone decomposition in basic aqueous solution[J]. Chem. Inform., 1985, 24(19): 2962-2966.
文章导航

/