欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

锑在氯化胆碱-乙二醇低共熔溶剂中的电沉积研究

  • 王昊 ,
  • 曹晓舟 ,
  • 薛向欣
展开
  • 东北大学冶金学院资源与环境系,辽宁 沈阳 110819

收稿日期: 2021-03-09

  修回日期: 2021-05-06

  网络出版日期: 2021-05-26

基金资助

国家自然科学基金项目(51204043)

Study on Electrodeposition of Antimony in Choline Chloride-Ethylene Glycol Eutectic Solvent

  • Hao Wang ,
  • Xiao-Zhou Cao ,
  • Xiang-Xin Xue
Expand
  • Department of Resources and Environment, School of Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China

Received date: 2021-03-09

  Revised date: 2021-05-06

  Online published: 2021-05-26

摘要

通过恒电位电沉积法在氯化胆碱-乙二醇(ChCl-EG)低共熔溶剂中成功制备了锑镀层。采用FTIR红外光谱和拉曼光谱分析了ChCl-EG低共熔溶剂内部的微观结构,采用循环伏安法研究了扫速、温度、浓度对Sb3+在ChCl-EG中的伏安行为的影响以及电化学还原规律。同时,采用计时电流法研究了Sb(III)在ChCl-EG中的电化学电结晶规律,采用SEM和XRD对电沉积产物进行表征。研究结果表明,ChCl-EG中存在大量氢键,并且Sb(III)的加入不会破坏ChCl-EG原有的分子结构;温度升高和增大浓度时Sb的沉积所需的过电位减小;343 K时Sb在钨电极上的成核方式为三维瞬时成核,施加沉积电位是Sb(III)发生电还原的主要驱动力,随着施加沉积电位的变化,电沉积产物的形貌发生变化。

本文引用格式

王昊 , 曹晓舟 , 薛向欣 . 锑在氯化胆碱-乙二醇低共熔溶剂中的电沉积研究[J]. 电化学, 2022 , 28(4) : 2103071 . DOI: 10.13208/j.electrochem.210307

Abstract

Antimony is a chemically stable metal that has been widely used in industry, military and other fields. The use of electrodeposition to prepare antimony coating has the advantages of simple operation and low cost. The deep eutectic solvent (DES) is a eutectic mixture composed of a hydrogen bond donor and a hydrogen bond acceptor at a fixed molar ratio. It has the advantages of wide electrochemical window, high thermal stability, easy preparation, and low cost. Selecting DES as the electrolyte for electrodeposition can avoid the hydrogen evolution reaction of the aqueous system and the toxicity of ionic liquids. In recent years, there have been more and more researches on the preparation of metal coatings by electrodeposition in DES. In this work, choline chloride (ChCl) and ethylene glycol (EG) were heated and mixed at a molar ratio of 2:1 to form DES, while antimony(III) chloride (SbCl3) was added to form an electrolyte. At room temperature, Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy were used to analyze the structure of the electrolyte. The results show that there were a large number of hydrogen bonds in DES, and that the existence of hydrogen bonds played an important role in the formation of DES. Sb(III) existed in the eutectic solvent in the form of [SbCl4]-. Using a three-electrode system, cyclic voltammetry was used to study the electrochemical behaviors in DES at different sweep speeds (25 ~ 55 mV·s-1), different temperatures (333 ~ 363 K), and different concentrations (0.01 ~ 0.10 mol·L-1) of Sb(III). The results indicate that at 343 K, the reduction of Sb(III) in ChCl-EG became a quasi-reversible reaction controlled by diffusion through one-step three-electron transfer. The diffusion coefficient at 343 K was 3.06×10-9 cm2·s-1. As the temperature and concentration of the electrolyte increased, the overpotential required for the reduction of Sb(III) decreased. The nucleation mode of electrochemical reduction of Sb(III) in ChCl-EG was studied by chronoamperometry. According to the Scharifker-Hills nucleation model, at 343 K, the nucleation of Sb on the tungsten electrode follows three-dimensional instantaneous nucleation. In addition, the electrodeposition products were characterized by SEM and XRD. SEM observations reveal that the applied deposition potential is the main driving force for the reduction of Sb(III). As the deposition potential increased from -0.33 V to -0.41 V, the morphology of the electrodeposition product gradually changed from granular crystals to dendrites. XRD data shows that there was Sb phase in the deposited product obtained at -0.41 V. In addition, the Cu2Sb phase was presented due to the interfacial reaction between the newly deposited Sb and the substrate Cu to form intermetallic compounds. Future research can continually study the influences of such inorganic additives as boric acid (BA), ammonium chloride (NH4Cl), and organic additives includingethylene-diaminetetraacetic acid (EDTA), N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) and Idranal VII (HEDTANa3) on Sb electrodeposition.

参考文献

[1] Xue F L(薛福连). Antimony with a wide range of uses[J]. Metal World(金属世界), 2007, 5: 67-67.
[2] Diao J J(刁静君), Wang W(王为). Research progress of semi-metals and semi-conductors electrodeposited in ionic liquid[J]. Mater. Prot.(材料保护), 2013, 46(4): 40-43.
[3] Su B(苏波), Li J(李坚), Hua Y X(华一新), Xu C Y(徐存英), Li Y(李艳), Ai G H(艾刚华). Electrochemistry of Sn2+/Sn in choline chloride-glycol deep eutectic solvents[J]. J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.)(中南大学学报(自然科学版)), 2018, 49(9): 2129-2136.
[4] Ibrahim R K, Hayyan M, AlSaadi M A, Ibrahim S, Hayyan A, Hashim M A. Physical properties of ethylene glycol-based deep eutectic solvents[J]. J. Mol. Liq., 2019, 276: 794-800.
[5] Yang H X, Reddy R G. Electrochemical deposition of zinc from zinc oxide in 2: 1 urea/choline chloride ionic liquid[J]. Electrochim. Acta., 2014, 147: 513-519.
[6] Vieira L, Schennach R, Gollas B. The effect of the electrode material on the electrodeposition of zinc from deep eutectic solvents[J]. Electrochim. Acta., 2016, 197: 344-352.
[7] Wang H Y(王怀有), Jing Y(景燕), Lv X H(吕学海), Yin G(尹刚), Wang X H(王小华), Yao Y(姚颖), Jia Y Z(贾永忠). Structure and physico-chemical properties of ionic liquid containing magnesium chloride[J]. J. Chem. Ind. Eng.(化工学报), 2011, 62(S2):21-25.
[8] Tenhunen T M, Lewandowska A E, Orelma H, Johansson L S, Virtanen T, Harlin A, Österberg M, Eichhorn S J, Tammelin T. Understanding the interactions of cellulose fibres and deep eutectic solvent of choline chloride and urea[J]. Cellulose, 2018, 25(1): 137-150.
[9] Miller M A, Wainright J S, Savinell R F. Iron electrodeposition in a deep eutectic solvent for flow batteries[J]. J. Ele-ctrochem. Soc., 2017, 164(4): A796-A803.
[10] Chang P, Chen Z, Zhang Y H, Liu Y. Direct measurement of aerosol pH in individual malonic acid and citric acid droplets under different relative humidity conditions via Raman spectroscopy[J]. Chemosphere, 2020, 241: 124960.
[11] Haight J G P. Polarography of tripositive antimony and arsenic. Cathodic reduction of antimonous in strong hydrochloric acid and anodic oxidation of arsenite and stibnite in strong sodium hydroxide[J]. J. Am. Chem. Soc., 1953, 75 (15): 3848-3851.
[12] Fung K W, Begun G M, Mamantov G. Raman spectra of molten bismuth trichloride and antimony trichloride and of their mixtures with potassium chloride or aluminum trichloride[J]. Inorg. Chem., 1973, 12 (1): 53-57.
[13] Habboush D A, Osteryoung R A. Electrochemical studies of antimony (III) and antimony (V) in molten mixtures of aluminum chloride and butylpyridinium chloride[J]. Inorg. Chem., 1984, 23(12): 1726-1734.
[14] Ali M R, Rahman M Z, Sankarsaha S. Electrodeposition of copper from a choline chloride based ionic liquid[J]. J. Electrochem., 2014, 20(2): 139-145.
[15] Catrangiu A S, Sin I, Prioteasa P, Cotarta A, Cojocaru A, Anicai L, Visan T. Studies of antimony telluride and copper telluride films electrodeposition from choline chloride containing ionic liquids[J]. Thin Solid Films, 2016, 611: 88-100.
[16] Hinatsu J T, Foulkes F R. Electrochemical kinetic parameters for the cathodic deposition of copper from dilute aqueous acid sulfate solutions[J]. Can. J. Chem. Eng., 1991, 69(2): 571-577.
[17] Nagaishi R, Arisaka M, Kimura T, Kitatsuji Y. Spectroscopic and electrochemical properties of europium (III) ion in hydrophobic ionic liquids under controlled condition of water content[J]. J. Alloys. Compd., 2007, 431(1-2): 221-225.
[18] Manh T L, Arce-Estrada E M, Romero-Romo M, Mejía-Caballero I, Aldana-González J, Palomar-Pardavé M. On wetting angles and nucleation energies during the electrochemical nucleation of cobalt onto glassy carbon from a deep eutectic solvent[J]. J. Electrochem. Soc., 2017, 164(12): D694-D699.
[19] Bu J J, Ru J J, Wang Z W, Hua Y X, Xu C Y, Zhang Y, Wang Y. Controllable preparation of antimony powders by electrodeposition in choline chloride-ethylene glycol[J]. Adv. Powder Technol., 2019, 30(12): 2859-2867.
[20] Hsieh Y T, Chen Y C, Sun I W. 1-Butyl-1-Methylpyrrolidinium dicyanamide room temperature ionic liquid for electrodeposition of antimony[J]. J. Electrochem. Soc., 2016, 163(5): D188-D193.
[21] Hsieh L Y, Fong J D, Hsieh Y Y, Wang S P, Sun I W. Electrodeposition of bismuth in a choline chloride/ethylene glycol deep eutectic solvent under ambient atmosphere[J]. J. Electrochem. Soc., 2018, 165(9): D331-D338.
[22] Jerkiewicz G, Perreault F, Radovic-Hrapovic Z. Effect of temperature variation on the under-potential deposition of copper on Pt(111) in aqueous H2SO4[J]. J. Phys. Chem. C, 2009, 113(28): 12309-12316.
[23] Lovric M, Hermes M, Scholz F. The effect of the electrolyte concentration in the solution on the voltammetric response of insertion electrodes[J]. J. Solid State Electr., 1998, 2(6): 401-404.
[24] Kahoul A, Azizi F, Bouaoud M. Effect of citrate additive on the electrodeposition and corrosion behaviour of Zn-Co alloy[J]. Trans. IMF, 2017, 95(2): 106-113.
[25] Zhou L P, Dai Y T, Zhang H, Jia Y R, Zhang J, Li C X. Nucleation and growth of bismuth electrodeposition from alkaline electrolyte[J]. B. Korean Chem. Soc., 2012, 33(5): 1541-1546.
[26] Lin Y F, Sun I W. Electrodeposition of zinc from a Lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt[J]. Electrochim. Acta, 1999, 44(16): 2771-2777.
[27] Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation[J]. Electrochim. Acta, 1983, 28(7): 879-889.
[28] Tamburri E, Angjellari M, Tomellini M, Gay S, Reina G, Lavecchia T, Barbini P, Pasquali M, Orlanducci S. Electrochemical growth of nickel nanoparticles on carbon nanotubes fibers: Kinetic modeling and implications for an easy to handle platform for gas sensing device[J]. Electrochim. Acta, 2015, 157: 115-124.
[29] Mosby J M, Prieto A L. Direct electrodeposition of Cu2Sb for lithium-ion battery anodes[J]. J. Am. Chem. Soc., 2008, 130(32): 10656-10661.
[30] Nam D H, Hong K S, Lim S J, Kwon H S. Electrochemical synthesis of a three-dimensional porous Sb/Cu2Sb anode for Na-ion batteries[J]. J. Power Sources, 2014, 247: 423-427.
[31] Kim R H, Kim K, Lim S J, Nam D H, Han D, Kwon H. Microstructure evolution of novel Sn islands prepared by electrodeposition as anode materials for lithium rechargeable batteries[J]. RSC Adv., 2017, 7(48): 30428-30432.
文章导航

/