欢迎访问《电化学(中英文)》期刊官方网站,今天是
教程

电化学测量中的欧姆电压降补偿问题

  • 陈佳琦 ,
  • 叶旭旭 ,
  • 廖玲文 ,
  • 韦臻 ,
  • 许绵乐 ,
  • 陈艳霞
展开
  • 合肥微尺度物质科学国家研究中心,中国科学技术大学化学物理系,安徽 合肥 230026
* Tel: (86-551)63600051, E-mail: yachen@ustc.edu.cn

收稿日期: 2021-03-18

  修回日期: 2021-04-17

  网络出版日期: 2021-05-10

基金资助

国家自然科学基金项目(21972131)

Ohmic Drop Compensation in Electrochemical Measurement

  • Jia-Qi Chen ,
  • Xu-Xu Ye ,
  • Ling-Wen Liao ,
  • Zhen Wei ,
  • Mian-Le Xu ,
  • Yan-Xia Chen
Expand
  • Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China

Received date: 2021-03-18

  Revised date: 2021-04-17

  Online published: 2021-05-10

摘要

对工作电极与参比电极之间的溶液电阻(Ru)进行准确的欧姆电压降补偿是获取可靠的电化学实验结果的前提,但测量中该如何进行补偿尚未建立规范的操作流程。本文首先探究了工作电极与Luggin毛细管末端距离对Ru的影响。随后对比了Autolab PGSTAT 302N、CHI系列恒电位仪的交流阻抗法与CHI系列恒电位仪所测得Ru的差别。并且以铂电极上的氢析出反应为例,探究了灵敏度、补偿百分比以及仪器等因素对补偿后HER极化曲线带来的影响。深入讨论了产生这些偏差的原因,最后给出了规避和减轻此类问题以实现准确有效的欧姆电压降补偿的建议。

本文引用格式

陈佳琦 , 叶旭旭 , 廖玲文 , 韦臻 , 许绵乐 , 陈艳霞 . 电化学测量中的欧姆电压降补偿问题[J]. 电化学, 2021 , 27(3) : 291 -300 . DOI: 10.13208/j.electrochem.201257

Abstract

The solution resistance (Ru) between the working electrode (WE) and the reference electrode (RE) may lead to significant Ohmic drop (iRu) and deviation of actually applied potential at the WE to the desired ones in electrochemical measurement. In the case of high current or large Ru, iRu compensation is imperative. Errors associated with insufficient compensation of theiRu drop may significantly affect the accuracy of data measured by conventional electrochemical methods, which may consequently result in wrong judgment and conclusions. In this article, we discuss important factors which may affect the accuracy of iRu compensation as well as ways how to eliminate such errors through examples. Since Ru will be changed sensitively with the distance between the tip of the Luggin capillary of the RE and the WE, it should always be kept at a fixed distance (usually as close to the surface of the WE as possible but without affecting the behavior of electrode processes) during a set of measurements.
In addition to the structure of the cell (relative positions of WE and RE), the methods of measuring Ru, current sensitivity for recording data, percentage of Ru compensation, and instruments could cause the result to be deviated from the actual value, which are demonstrated by taken hydrogen evolution reaction on Pt electrode as model reactions measured using both CHI and Autolab PGSTAT 302N potentiostats. Comparing the AC impedance method with the potential step method in the automatic compensation function of CHI potentiostat, theRu measured by the potential step method was smaller than the Ru measured by the AC impedance method and the actual value. It is suggested to use the AC impedance method to measure Ru, input the resistance value manually and complete the compensation by the instrument. Current sensitivity may limit the maximum Ru to be compensated, hence, one should select the right current sensitivity before recording data. In particular, when compensating by manual input using some types of potentiostat, one should be aware that the software may show the completely compensated resistance, in reality, however, the part of the resistance that exceeded the upper limit will not be compensated successfully. Furthermore, the percentage ofRu compensation should be carefully optimized before carrying out the actual measurements, through comparing curves recorded with different percentages of compensation. Moreover, the same compensation level but conducted with different instruments may lead to significantly different results, using the same instrument in a series study is recommended to mitigate related errors. A set of strict compensation standards applied to all instruments and electrochemical systems is difficult to be established. Hence, we suggest carrying out some control experiments to optimize the iRu compensation before the actual measurements, and write in detail their compensation methods and parameters in the published results, especially the factors mentioned in this paper.

参考文献

[1] Chen Y X (陈艳霞), Huang J (黄俊), Zhan D P (詹东平). Encouraging more frogs in electrochemistry[J]. J. Electrochem.(电化学), 2020, 26(1): 1-2.
[2] He F, Chen W, Chen J Q, Zhen E F, Cai J, Chen Y X. The effect of water on the quantification of volatile species by differential electrochemical mass spectrometry[J]. Anal. Chem., 2021, 93(13): 5547-5555.
[3] Vliet D, Strmcnik D S, Chao W, Stamenkovic V R, Markovic N M, Koper M. On the importance of correcting for the uncompensated ohmic resistance in model experiments of the oxygen reduction reaction[J]. J. Electroanal. Chem., 2010, 647(1): 29-34.
[4] Bauer H, Foo D. Second-harmonic alternating current polarography[J]. Aust. J. Chem., 1966, 19(7): 1103-1115.
[5] Milner D F, Weaver M J. The influence of uncompensated solution resistance on the determination of standard electrochemical rate constants by cyclic voltammetry, and some comparisons with ac voltammetry[J]. Anal. Chim. Acta, 1987, 198: 245-257.
[6] Liao L W (廖玲文). Methodology and electrocatalysts for oxygen reduction reaction[D]. Hefei: University of Science and Technology of China(中国科学技术大学), 2013.
[7] Britz D. iR elimination in electrochemical cells[J]. J. Electroanal. Chem. Interf. Electrochem., 1978, 88(3): 309-352.
[8] Oldham K. The effect of uncompensated resistance on the potential-step method of investigating electrochemical kinetics[J]. J. Electroanal. Chem., 1966, 11(3): 171-187.
[9] Newman J. Current distribution on a rotating disk below the limiting current[J]. J. Electrochem. Soc., 1966, 113(12): 1235-1241.
[10] Piontelli R, Bianchi G, Bertocci U, Guerci C, Rivolta B. Meβmethoden der Polarisationsspannungen II[J]. Z. Elektrochem., 1954, 58(1): 54-64.
[11] Bockris J M, Azzam A. The kinetics of the hydrogen evolution reaction at high current densities[J]. Trans. Faraday Sot., 1952, 48: 145-160.
[12] Montella C. Discussion of the potential step method for the determination of the diffusion coefficients of guest species in host materials: Part I. Influence of charge transfer kinetics and ohmic potential drop[J]. J. Electroanal. Chem., 2002, 518(2): 61-83.
[13] Liu X, Cui S S, Qian M M, Sun Z J, Du P W. In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions[J]. Chem. Commun., 2016, 52(32): 5546-5549.
[14] Chan S H, Chen X J, Khor K A. Reliability and accuracy of measured overpotential in a three-electrode fuel cell system[J]. J. Appl. Electrochem., 2001, 31(10): 1163-1170.
[15] Roullier L, Laviron E. Effect of uncompensated ohmic drop in surface linear potential sweep voltammetry: Application to the determination of surface rate constants[J]. J. Electroanal. Chem. Interf. Electrochem., 1983, 157(2): 193-203.
[16] Mirĉeski V, Lovric M. Ohmic drop effects in square-wave voltammetry[J]. J. Electroanal. Chem., 2001, 497(1-2): 114-124.
[17] Juárez A, Baruzzi A, Yudi L. Ohmic drop effects in square-wave voltammetry response for an ion transfer process at a liquid-liquid interface[J]. J. Electroanal. Chem., 2005, 577(2): 281-286.
[18] Nicholson R S, Shain I. Correction. Theory of stationary electrode polarography[J]. Anal. Chem., 1964, 36(7): 1212-1212.
[19] Haber F. Über die elektrische Reduktion von Nichtelektrolyten[J]. Z. Phys. Chem., 1900, 32(1): 193-270.
[20] Tang Y L (唐延丽). Electrochemical impedance spectroscopy study of hydrogen and oxygen-containing species adsorption on Ir(111) electrode[D]. Hefei: University of Science and Technology of China(中国科学技术大学), 2020.
[21] Scribner L L. The measurement and correction of electrolyte resistance in electrochemical tests[M]. Philadelphia: ASTM, 1990: 180-191.
[22] Metrohm Instruments. Ohmic Drop: Part 1 - Basic Principles[EB/OL]. [2021-03-18]. https://www.metrohm.com/zh-cn/applications/AN-EC-003?fromProductFinder=true.
[23] Cooper K R, Smith M. Electrical test methods for on-line fuel cell ohmic resistance measurement[J]. J. Power Sour-ces, 2006, 160(2): 1088-1095.
[24] Oelβner W, Berthold F, Guth U. The iR drop-well-known but often underestimated in electrochemical polarization measurements and corrosion testing[J]. Mater. Corros., 2006, 57(6): 455-466.
[25] Booman G, Holbrook W. Electroanalytical controlled-potential instrumentation[J]. Anal. Chem., 1963, 35(12): 1793-1809.
[26] Gamry Instruments. Understanding ir compensation[EB/OL]. [2021-03-18]. https://cn.gamry.com/application-notes-3/instrumentation/understanding-ir-compensation/.
[27] Metrohm Instruments. Ohmic Drop: Part 2-Measurement [EB/OL]. [2021-03-18]. https://www.metrohm.com/zh-cn/applications/AN-EC-004?fromProductFinder=true.
[28] Yamagishi H. Automatic compensation of the IR drop in three-electrode systems by use of an electronic unit[J]. J. Electroanal. Chem., 1992, 326(1-2): 129-137.
[29] Yarnitzky C, Friedman Y. Dynamic compensation of the over all and uncompensated cell resistance in a two-or three-electrode system. Steady state techniques[J]. Anal. Chem., 1975, 47(6): 876-880.
[30] Guo Z Y, Lin X Q. Ultrafast cyclic voltammetry at scan rates of up to 3 MV s-1 through a single-opamp circuit with positive feedback compensation of ohmic drop[J]. J. Electroanal. Chem., 2004, 568: 45-53.
[31] Britz D. 100% ir compensation by damped positive feedback[J]. Electrochim. Acta, 1980, 25(11): 1449-1452.
[32] Chen G, Xie J J, Zhang Z H, Meng W Q, Zhang C F, Kang K, Wu Y B, Guo Z Y. A portable digital-control electrochemical system with automatic ohmic drop compensation for fast scan voltammetry and its application to ultrasensitive detection of chromium (III)[J]. Sens. Actuators B Chem., 2019, 301: 127135.
[33] Bard A J, Faulkner L R. Electrochemical methods: fundamentals and applications[M]. New York: John Wiley & Sons, 2001: 632-657.
[34] Jia Z (贾铮), Dai C S (戴长松), Chen L (陈玲). Electrochemical measurement methods[M]. Beijing: Chemical Industry Press(化学工业出版社), 2006: 193-196.
[35] Clavilier J, Faure R, Guinet G, Durand R. Preparation of monocrystalline Pt microelectrodes and electrtochemical study of the plane surfaces cut in the direction of the {111} and {110} planes[J]. J. Electroanal. Chem. Interf. Electrochem., 1980, 107(1): 205-209.
[36] Tang Y L (唐延丽), Chen W (陈微), Xu M L (许绵乐), Wei Z (韦臻), Cai J (蔡俊), Chen Y X (陈艳霞). Unravelling the hydrogen adsorption kinetics on Ir(111) electrode in acid solutions by impedance spectroscopy[J]. Chinese J. Chem. Phys.(化学物理学报), 2020, 33(4).
[37] He P, Faulkner L R. Intelligent, automatic compensation of solution resistance[J]. Anal. Chem., 1986, 58(3): 517-523.
[38] Piontelli R, Bianchi G, Aletti R. Messungsmethoden der Polarisationsspannungen mittels Modellversuchen[J]. Z. Elektrochem, 1952, 56(2): 86-93.
[39] Piontelli R, Bertocci U, Bianchi G, Guerci C, Poli G. Meβmethoden der Polarisationsspannungen. III[J]. Z. Ele-ktrochem, 1954, 58(2): 86-95.
[40] Piontelli R, Rivolta B, Montanelli G. Meβmethoden der Polarisationsspannungen. IV[J]. Z. Elektrochem, 1955, 59(1): 64-67.
[41] Barnartt S. Primary current distribution around capillary tips used in the measurement of electrolytic polarization[J]. J. Electrochem. Soc., 1952, 99(12): 549.
[42] Barnartt S. Magnitude of IR-drop corrections in electrode polarization measurements made with a Luggin-Haber capillary[J]. J. Electrochem. Soc., 1961, 108(1): 102.
[43] Hayes M, Kuhn A, Patefield W. Techniques for the determination of ohmic drop in half-cells and full cells: A review[J]. J. Power Sources, 1977, 2(2): 121-136.
[44] Müller E, Soller M. Die Rolle des Bleisuperoxyds als Anode bei der elektrolytischen Oxydation des Chromsulfates zu Chromsäure[J]. Z. Elektrochem, 1905, 11(48): 863-872.
[45] Milligan A. A method for measuring the potential of a current-carrying electrode[J]. Br. J. Appl. Phys., 1952, 3(12): 372.
[46] Pletcher D, Greff R, Peat R, Peter L, Robinson J. Insturmental methods in electrochemistry[M]. New York: Ellis Horwood Ltd, 2001: 368-370.
[47] Newman J. Ohmic potential measured by interrupter techniques[J]. J. Electrochem. Soc., 1970, 117(4): 507-508.
[48] Arjmand F, Zhang L F. Solution resistivity, ohmic drop and oxygen reduction rate at high temperature pressurized water[J]. Electrochim. Acta, 2016, 216: 438-448.
文章导航

/