欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

基于Zr-MOFs光电化学传感用于同型半胱氨酸的检测

  • 董文霞 ,
  • 温广明 ,
  • 刘斌 ,
  • 李忠平
展开
  • 1.晋中学院化学化工学院,山西 榆次 030600
    2.山西大学化学化工学院,山西 太原 030006
* Tel: (86-351)3985596, E-mail: wgm@sxu.edu.cn

收稿日期: 2021-01-26

  修回日期: 2021-05-13

  网络出版日期: 2021-12-28

基金资助

2019年山西省优秀研究生创新项目(2019SY018);晋中学院创新团队项目(jzxycxtd2019007);南京大学“生命分析化学国家重点实验室”2019年度开放研究项目(SKLACLS1911)

Photoelectrochemical Sensing Based on Zr-MOFs for Homocysteine Detection

  • Wen-Xia Dong ,
  • Guang-Ming Wen ,
  • Bin Liu ,
  • Zhong-Ping Li
Expand
  • 1. School of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030600, Shanxi, China
    2. Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China

Received date: 2021-01-26

  Revised date: 2021-05-13

  Online published: 2021-12-28

摘要

以4-羧基苯基卟啉(TCPP)作为配体,金属锆(Zr)作为配位金属,通过水热法合成Zr-MOFs。以Zr-MOFs材料作为光电活性材料构建了阴极光电化学传感器用于检测同型半胱氨酸(Hcy)。当λ > 420 nm的氙灯光源照射Zr-MOFs时,处于价带(VB)上的电子(e-)跃迁至导带(CB),并在价带上产生空穴(h+),从而产生光电流。同型半胱氨酸的加入会阻碍电子的传递,从而造成阴极光电流降低。当目标物浓度为10 ~ 100 nmol·L-1和100 ~ 1000 nmol·L-1时,光电流信号变化值与目标物浓度呈线性关系,且检出限为2.17 nmol·L-1,制备的传感器具有良好的稳定性和选择性。

本文引用格式

董文霞 , 温广明 , 刘斌 , 李忠平 . 基于Zr-MOFs光电化学传感用于同型半胱氨酸的检测[J]. 电化学, 2021 , 27(6) : 681 -688 . DOI: 10.13208/j.electrochem.210126

Abstract

Due to the independent form of the light source and detection system, photoelectrochemical (PEC) sensor has the advantages of low background, high sensitivity and simple operation. So far, PEC systems have been widely used in the fields including the actual detection of metal ions, biological antibodies or antigens in environmental pollutants. When the photosensitive material is irradiated by a light source with an energy being equal to or greater than its band gap, electrons (e-) transition occurs from the valence band to the conduction band, leaving a hole (h+), at the same time, the generated electron-hole pair (e-/h+) separate, and migrate to the electrode surface and electrolyte to generate photocurrent or photovoltage. When the target analyte is added, it will interact with its recognition molecule, and affect the separation or migration process of the charge, thereby, causing a change in the photocurrent. Metal organic framework (MOF) is a material composed of metal ions and organic linking groups. They have adjustable porosity, functional surface and massive conjugate back bone. These unique characteristics of MOF have been extensively explored in various fields. Zr-MOFs were synthesized use 4-carboxyphenylporphyrin (TCPP) as the ligand, and metal zirconium (Zr) as the coordination metal. Using Zr-MOFs as the photoelectrically active material, a cathode photoelectrochemical sensor was constructed to detect homocysteine (Hcy). A three-electrode system, consisting of Zr-MOFs/FTO electrode, Pt electrode and Ag/AgCl electrode, was inserted into 0.01 mol·L-1 HEPES solution to prepare the sensor. An aqueous solution of homocysteine was added to the electrolyte, allowing it to stand for 5 min. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the reaction process and the electron transfer process between optoelectronic materials. When the Xe lamp with λ > 420 nm is used to irradiate Zr-MOFs, electrons (e -) in the valence band transfer to the conduction band, and holes (h+) are generated in the valence band, thereby, generating light current. The addition of homocysteine will hinder the transfer of electrons, causing the cathode photocurrent to be decreased. The prepared sensor had good linear responses in the ranges of 10 ~ 100 nmol·L-1 and 100 ~ 1000 nmol·L-1, and the detection limit was 2.17 nmol·L-1. The sensor also exhibited good stability and selectivity. The prepared cathode photoelectric sensor could sensitively and efficiently detect homocysteine in milk. The studied high-performance photoelectric active materials and chemical sensing platforms may be important for the design of other chemical sensing platforms and the development of PEC applications.

参考文献

[1] Shu J, Qiu Z L, Zhou Q, Lin Y X, Lu M H, Tang D P. Enzymatic oxydate-triggered self-illuminated photoelectrochemical sensing platform for portable immunoassay using digital multimeter[J]. Anal. Chem., 2016, 88(5): 2958-2966.
[2] Li Y, Zhang N, Zhao W W, Jiang D C, Xu J J, Chen H Y. Polymer dots for photoelectrochemical bioanalysis[J]. Anal. Chem., 2017, 89(9): 4945-4950.
[3] Zhao C Q, Ding S N, Xu J J, Chen H Y. ZnAgInS quantum dot-decorated BiOI heterostructure for cathodic photoelectrochemical bioanalysis of glucose oxidase[J]. ACS Appl. Nano Mater., 2020, 3(11): 11489-11496.
[4] Yan K, Liu Y, Yang Y H, Zhang J D. A cathodic “signal-off” photoelectrochemical aptasensor for ultrasensitive and selective detection of oxytetracycline[J]. Anal. Chem., 2015, 87(24): 12215-12220.
[5] Wu S, Song H L, Song J, He C, Ni J, Zhao Y Q, Wang X Y. Development of triphenylamine functional dye for selective photoelectrochemical sensing of cysteine[J]. Anal. Chem., 2014, 86(12): 5922-5928.
[6] Li Z P, Dong W X, Du X Y, Wen G M, Fan X J. A novel photoelectrochemical sensor based on g-C3N4@CdS QDs for sensitive detection of Hg2+[J]. Microchem. J., 2020, 152: 104259.
[7] Yu S Y, Zhang L, Zhu L B, Gao Y, Fan G C, Han D M, Chen G X, Zhao W W. Bismuth-containing semiconductors for photoelectrochemical sensing and biosensing[J]. Coord. Chem. Rev., 2019, 393: 9-20.
[8] Gao C M, Xue J, Zhang L, Cui K, Li H, Yu J H. Paper-based origami photoelectrochemical sensing platform with TiO2/Bi4NbO8Cl/Co-Pi cascade structure enabling of bidirectional modulation of charge carrier separation[J]. Anal. Chem., 2018, 90(24): 14116-14120.
[9] Hao Q, Wang P, Ma X Y, Su M Q, Lei J P, Ju H X. Charge recombination suppression-based photoelectrochemical strategy for detection of dopamine[J]. Electrochem. Commun., 2012, 21: 39-41.
[10] Cooper D R, Suffern D, Carlini L, Clarke S J, Parbhoo R, Bradforth S E, Nadeau J L. Photoenhancement of lifetimes in CdSe/ZnS and CdTe quantum dot-dopamine conjugates[J]. Phys. Chem. Chem. Phys., 2009, 11(21): 4298-4310.
[11] Deria P, Gómez-Gualdrón D A, Hod I, Snurr R MQ, Hupp J T, Farha O K. Framework-topology-dependent catalytic activity of zirconium-based (porphinato)zinc(II) MOFs[J]. J. Am. Chem. Soc., 2016, 138(43): 14449-14457.
[12] Chen J, Chen H Y, Wang T S, Li J F, Wang J, Lu X Q. Copper ion fluorescent probe based on Zr-MOFs composite material[J]. Anal. Chem., 2019, 91(7): 4331-4336.
[13] Wang J H, Li M N, Yan S, Zhang Y, Liang C C, Zhang X M, Zhang Y B. Modulator-induced Zr-MOFs diversification and investigation of their properties in gas sorption and Fe3+ ion sensing[J]. Inorg. Chem., 2020, 59(5): 2961-2968.
[14] Gao Y, Wu J F, Wang J Q, Fan Y X, Zhang S Y, Dai W. A novel multifunctional p-type semiconductor@MOFs nanoporous platform for simultaneous sensing and photodegradation of tetracycline[J]. ACS Appl. Mater. Interfaces, 2020, 12(9): 11036-11044.
[15] Xu G L, Zhang H B, Wei J, Zhang H X, Wu X, Li Y, Li C S, Zhang J, Ye J H. Integrating the g-C3N4 nanosheet with B-H bonding decorated metal-organic framework for CO2 activation and photoreduction[J]. ACS Nano, 2018, 12(6): 5333-5340.
[16] Zhang G Y, Zhuang Y H, Shan D, Su G F, Cosnier S, Zhang X J. Zirconium-based porphyrinic metal-organic framework (PCN-222): enhanced photoelectrochemical response and its application for label-free phosphoprotein detection[J]. Anal. Chem., 2016, 88(22): 11207-11212.
[17] Zhu Y H, Xu Z W, Yan K, Zhao H B, Zhang J D. One-step synjournal of CuO-Cu2O heterojunction by flame spray pyrolysis for cathodic photoelectrochemical sensing of L-cysteine[J]. ACS Appl. Mater. Interfaces, 2017, 9(46): 40452-40460.
[18] Michael J, MacCoss N K. Measurement of homocysteine concentrations and stable isotope tracer enrichments in human plasma[J]. Anal. Chem., 1999, 71(20): 4527-4533.
[19] Wang Y Q, Wang W, Wang S S, Chu W J, Wei T, Tao H J, Zhang C X, Sun Y M. Enhanced photoelectrochemical detection of L-cysteine based on the ultrathin polythiophene layer sensitized anatase TiO2 on F-doped tin oxide substrates[J]. Sensor. Actuat. B - Chem., 2016, 232: 448-453.
[20] Hubmacher D, Sabatier L, Annis D S, Mosher D F, Reinhardt D P. Homocysteine modifies structural and functional properties of fibronectin and interferes with the fibronectin-fibrillin-1 interaction[J]. Biochem., 2011, 50(23): 5322-5332.
[21] Ozoemena K, Westbroek P, Nyokong T. Long-term stability of a gold electrode modified with a self-assembled monolayer of octabutylthiophthalocyaninato-cobalt(II) towards L-cysteine detection[J]. Electrochem. Commun., 2001, 3(9): 529-534.
[22] Magdalena S, Anthony A M, Agata C, Maria H. Mercury/homocysteine ligation-induced ON/OFF-switching of a T-T mismatch-based oligonucleotide molecular beacon[J]. Anal. Chem., 2012, 84(11): 4970-4978.
[23] Gates A T, Fakayode S O, Lowry M, Ganea G M, Murugeshu A, Robinson J W, Strongin R M, Warner I M. Gold nanoparticle sensor for homocysteine thiolactone-induced protein modification[J]. Langmuir, 2008, 24(8): 4107-4113.
[24] Zhang M, Yu M X, Li F Y, Zhu M W, Li M Y, Gao Y H, Li L, Liu Z Q, Zhang J P, Zhang D Q, Yi T, Huang C H. A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging[J]. J. Am. Chem. Soc., 2007, 129(34): 10322-10323.
[25] Chen H L, Zhao Q, Wu Y B, Li F Y, Yang H, Yi T, Huang C H. Selective phosphorescence chemosensor for homocysteine based on an iridium(III) complex[J]. Inorg. Chem., 2007, 46(26): 11075-11081.
[26] Feng D W, Gu Z Y, Li J R, Jiang H L, Wei Z W, Zhou H C. Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts[J]. Angew. Chem. Int. Ed., 2012, 51(41): 10307-10310.
[27] Bonnett B L, Smith E D, Cai M, Haag J V, Serrano J M, Cornell H D, Gibbons B, Martin S M, Morris A J. PCN-222 metal-organic framework nanoparticles with tunable pore size for nanocomposite reverse osmosis membranes[J]. ACS Appl. Mater. Interfaces, 2020, 12(13): 15765-15773.
[28] Carrasco S, Sanz-Marco A, Matute B M. Fast and robust synjournal of metalated PCN-222 and their catalytic performance in cycloaddition reactions with CO2[J]. Organo-metallics, 2019, 38(18): 3429-3435.
[29] Tan W L, Wei T, Huo J, Loubidi M, Liu T T, Liang Y, Deng L B. Electrostatic interaction-induced formation of enzyme-on-MOF as chemo-biocatalyst for cascade reaction with unexpectedly acidstable catalytic performance[J]. ACS Appl. Mater. Interfaces, 2019, 11(40): 36782-36788.
[30] Chen S, Tian J N, Jiang Y X, Zhao Y C, Zhang J N, Zhao S L. A one-step selective fluorescence turn-on detection of cysteine and homocysteine based on a facile CdTe/CdS quantum dots-phenanthroline system[J]. Anal. Chim. Acta, 2013, 787: 181-188.
[31] Beitollahi H, Zaimbashi R, Mahani M T, Tajik S. A label-free aptasensor for highly sensitive detection of homocysteine based on gold nanoparticles[J]. Bioelectrochemistry, 2020, 134: 107497.
[32] Tang L J, Shi J Z, Huang Z L, Yan X M, Zhang Q, Zhong K L, Hou S H, Bian Y J. An ESIPT-based fluorescent probe for selective detection of homocysteine and its application in live-cell imaging[J]. Tetrahedron Lett., 2016, 57(47): 5227-5231.
文章导航

/