欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

ANiN(A = Li, Na, Mg, Ca)的结构、热力学、弹性和电子性质的第一性原理研究

  • 黄夏敏 ,
  • 张丽红 ,
  • 吴顺情 ,
  • 杨勇 ,
  • 朱梓忠
展开
  • 1.厦门大学物理科学与技术学院,福建 厦门 361005
    2.厦门大学固体表面物理化学国家重点实验室,福建 厦门 361005
    3.厦门大学福建省理论和计算化学重点实验室, 福建 厦门 361005

收稿日期: 2021-03-05

  修回日期: 2021-04-15

  网络出版日期: 2021-04-20

Structural, Dynamic, Elastic and Electronic Properties of ANiN (A = Li, Na, Mg, Ca): First-Principles Calculations

  • Xia-Min Huang ,
  • Li-Hong Zhang ,
  • Shun-Qing Wu ,
  • Yong Yang ,
  • Zi-Zhong Zhu
Expand
  • 1. Department of Physics, Xiamen University, Xiaman 361005, Fujian, China
    2. State Key Lab for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, Fujian, China
    3. Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, Fujian, China
* Tel: (86-592)2180361, E-mail: zzhu@xmu.edu.cn

Received date: 2021-03-05

  Revised date: 2021-04-15

  Online published: 2021-04-20

摘要

三元过渡金属氮化物ANiN (A = Li, Na, Mg, Ca)是潜在的可充放电池的电极材料。物理性质,比如热稳定性、电子能隙以及弹性稳定性等,对于这些材料的电池应用都是非常重要的。本文使用第一原理方法,对比研究了ANiN这些材料的结构、动力学、弹性和电子结构性质。对状态方程和声子谱的计算被用来确定体系的稳定结构。对最稳定结构的弹性常数的计算表明,这些稳定结构都满足 Born-Huang的稳定性判据,意味着它们的弹性稳定性。对体系电子结构的计算表明,LiNiN和CaNiN是半金属(half-metals),MgNiN是磁性材料,而NaNiN是通常的金属。这些材料的磁学性质都通过Stoner理论进行了解释。最后,电荷密度的计算被用来很好地说明了这些材料中的Ni-N成键的特征,表明成键特点主要是离子性的,但明显地混合了共价性。

本文引用格式

黄夏敏 , 张丽红 , 吴顺情 , 杨勇 , 朱梓忠 . ANiN(A = Li, Na, Mg, Ca)的结构、热力学、弹性和电子性质的第一性原理研究[J]. 电化学, 2021 , 27(3) : 339 -350 . DOI: 10.13208/j.electrochem.210302

Abstract

Ternary transition metal nitrides ANiN (A = Li, Na, Mg, Ca) are potential electrode materials for rechargeable batteries. The physical properties, such as the thermodynamic stability, the electronic band gap as well as the elastic stability, are important for their battery applications. Here, comparative studies are performed for the structural, dynamic, elastic and electronic properties of ANiN by the first-principles method. The calculations on the cohesive energy versus unit-cell volume and phonon spectra are employed to determine the most stable structures of ANiN. The calculated elastic constants of the most stable structures indicate that the Born-Huang criterion for the elastic stability can all be satisfied, showing the elastic stability of the materials. The electronic structures calculations suggest that LiNiN and CaNiN are half-metals, MgNiN is magnetic metal, while NaNiN is a common metal. The magnetization of the materials is understood by the Stoner theory. Furthermore, the charge density plots have been used to illustrate the bonding between Ni and N atoms, which is mainly ionic mixed with covalent.

参考文献

[1] He H N, Wang H Y, Tang Y G, Liu Y N. Current studies of anode materials for sodium-ion battery[J]. Prog. Chem., 2014, 26(4): 572-581.
[2] Ma S, Jiang M D, Tao P, Song C Y, Wu J B, Wang J, Deng T, Shang W. Temperature effect and thermal impact in lithium-ion batteries: A review[J]. Prog. Nat. Sci., 2018, 28(6): 653-666.
[3] Kulova T L, Fateev V N, Seregina E A, Grigoriev A S. A brief review of post-lithium-ion batteries[J]. Int. J. Electrochem. Sci., 2020, 15(8): 7242-7259.
[4] Chern M Y, Disalvo F J. Synjournal, structure, electric, and magnetic-properties of CaNiN[J]. J. Solid State Chem., 1990, 88(2): 459-464.
[5] Springborg M, Albers R C. Charge and dimensionality effects on the properties of CaNiN[J]. Phys. Rev. B, 2004, 69(23): 235115.
[6] Green M T, Hughbanks T. Electronic-structures of nitrido-metalates — molecular and extended-chain ions[J]. Inorg. Chem., 1993, 32(24): 5611-5615.
[7] Stoeva Z, Gomez R, Gordon A G, Allan M, Gregory D H, Hix G B, Titman J J. Fast lithium ion diffusion in the ternary layered nitridometalate LiNiN[J]. J. Am. Chem. Soc., 2004, 126(13): 4066-4067.
[8] Stoeva Z, Jager B, Gomez R, Messaoudi S, Ben Yahia M, Rocquefelte X, Hix G B, Wolf W, Titman J J, Gautier R, Herzig P, Gregory D H. Crystal chemistry and electronic structure of the metallic lithium ion conductor, LiNiN[J]. J. Am. Chem. Soc., 2007, 129(7): 1912-1920.
[9] Niewa R, Huang Z L, Schnelle W, Hu Z, Kniep R. Preparation, crystallographic, spectroscopic and magnetic characterization of low-valency nitridometalates Li2[(Li1-x Mx)N] with M = Cu, Ni[J]. Anorg. Allg. Chem., 2003, 629(10): 1778-1786.
[10] Kanwal S, Rahman G. Defects-driven magnetism in bulk alpha-Li3N[J]. J. Magn. Magn. Mater., 2018, 466: 192-199.
[11] Nishijima M, Kagohashi T, Imanishi M, Takeda Y, Yamamoto O, Kondo S. Synjournal and electrochemical studies of a new anode material, Li3-x CoxN[J]. Solid State Ion., 1996, 83(1-2): 107-111.
[12] Shodai T, Okada S, Tobishima S, Yamaki J. Study of Li3-xMxN(M:Co, Ni or Cu) system for use as anode material in lithium rechargeable cells[J]. Solid State Ion., 1996, 86-8(2): 785-789.
[13] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999, 59(3): 1758-1775.
[14] Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci., 1996, 6(1): 15-50.
[15] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54(16): 11169-11186.
[16] Blochl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994, 50(24): 17953-17979.
[17] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868.
[18] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976, 13(12): 5188-5192.
[19] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study[J]. Phys. Rev. B, 1998, 57(3): 1505-1509.
[20] Rohrbach A, Hafner J, Kresse G. Electronic correlation effects in transition-metal sulfides[J]. J. Phys.: Condes. Matter, 2003, 15(6): 979-996.
[21] May K J, Kolpak A M. Improved description of perovskite oxide crystal structure and electronic properties using self-consistent Hubbard U corrections from ACBN0[J]. Phys. Rev. B, 2020, 101(16): 165117-165117.
[22] Bouiadjra O B, Merad G, Raulot J M, Abdelkader H S, Esling C. A comparative study on the high and low symmetric structures of (LaMnO3)n/(LaNiO3)n superlattices by first-principles calculations[J]. J. Magn. Magn. Mater., 2020, 499: 166251.
[23] Serdtsev A V, Solodovnikov S F, Medvedeva N I. Sodium diffusion and redox properties of alluaudite Na2+2xM2-x (MoO4)3(M = Fe, Co, Ni) from DFT+U study[J]. Mater. Today Commun., 2020, 22: 100825.
[24] Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures[J]. Phys. Rev. B, 2008, 78(13): 134106.
[25] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation[J]. APL Mater., 2013, 1(1): 011002.
[26] Murnaghan F D. The compressibility of media under extreme pressures[J]. Proc. Natl. Acad. Sci., USA, 1944, 30: 244-247.
[27] Cabana J, Stoeva Z, Titman J J, Gregory D H, Palacin M R. Towards new negative electrode materials for Li-ion batteries: Electrochemical properties of LiNiN[J]. Chem. Mater., 2008, 20(5): 1676-1678.
[28] Hu C H, Yang Y, Zhu Z Z. Structural stability and electronic properties of LiNiN[J]. Solid State Commun., 2010, 150(13-14): 669-674.
[29] Wang Y X. Elastic and electronic properties of TcB2 and superhard ReB2: First-principles calculations[J]. Appl. Phys. Lett., 2007, 91(10): 101904.
[30] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles[J]. Phys. Rev. B, 2007, 76(5): 054115.
[31] Hou Z F. Elastic properties and electronic structures of antiperovskite-type InNCo3 and InNNi3[J]. Solid State Commun., 2010, 150(39-40): 1874-1879.
[32] Voigt W. The textbook of crystal physics[M]. Teubner B G (Ed.), Leipzig und Berlin, 1928.
[33] Reuss A. Stresses constant in composite, rule of mixtures for compliance components[J]. J. Appl. Math. Mech., 1929, 9(1): 49-58.
[34] Hill R. The elastic behavior of crystalline aggregate[J]. Proc. Phys. Soc., London, Sect. A, 1952, 65(5): 349-354.
[35] Seo D K, Kim S H. Nature of Stoner condition for metallic ferromagnetism[J]. J. Comput. Chem., 2008, 29(13): 2172-2176.
[36] Janak J F. Uniform susceptibilities of metallic elements[J]. Phys. Rev. B, 1977, 16(1): 255-262.
[37] Wu S Q, Cai N L, Zhu Z Z, Yang Y. Ab initio study on the Li deintercalation in ternary lithium nitridocuprate Li2.5Cu0.5N[J]. Electrochim. Acta, 2008, 53(27): 7915-7920.
文章导航

/