欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

纳米晶枝CuAu 合金催化剂对二氧化碳电催化还原性能的研究

  • Dylan Siltamaki ,
  • 陈帅 ,
  • Farnood Pakravan ,
  • Jacek Lipkowski ,
  • 陈爱成
展开
  • Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada

收稿日期: 2021-02-22

  修回日期: 2021-04-16

  网络出版日期: 2021-04-10

Synthesis and Electrochemical Study of CuAu Nanodendrites for CO2 Reduction

  • Dylan Siltamaki ,
  • Shuai Chen ,
  • Farnood Rahmati ,
  • Jacek Lipkowski ,
  • Ai-Cheng Chen
Expand
  • Electrochemical Technology Centre, Department of Chemistry, University of Guelph,50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
* Tel: 1 (519) 8244120, E-mail: aicheng@uoguelph.ca

Received date: 2021-02-22

  Revised date: 2021-04-16

  Online published: 2021-04-10

摘要

利用可再生清洁能源将CO2转化为CO和其他小分子是合成含碳燃料的可观方法之一。间歇性可再生能源存储的重要策略之一是将二氧化碳进行电化学还原。选择具有高活性和稳定性的电催化剂对于电化学还原CO2至关重要。在这项研究中,我们使用简单的电沉积方法合成了具有纳米晶枝状结构的CuAu合金电极。各项表征显示原子比约为1:1的CuAu纳米枝晶对CO2的电化学还原具有出色的催化活性。合成的主要产物是H2和CO,这是合成气体是合成天然气,氨和甲醇合成的中间体。电化学阻抗谱(EIS)测量表明,相对于Cu和Au电沉积催化剂,CuAu纳米晶枝状催化剂具有相对低的电荷转移阻力。CuAu纳米枝晶催化剂是一种具有潜在的转化CO2为合成气体的高活性电催化剂。

本文引用格式

Dylan Siltamaki , 陈帅 , Farnood Pakravan , Jacek Lipkowski , 陈爱成 . 纳米晶枝CuAu 合金催化剂对二氧化碳电催化还原性能的研究[J]. 电化学, 2021 , 27(3) : 278 -290 . DOI: 10.13208/j.electrochem.201253

Abstract

The conversion of carbon dioxide (CO2) to carbon monoxide (CO) and other value-added products is an interesting approach for carbon-containing fuel synthesis using renewable and clean energy. The electrochemical reduction of CO2 is one of the promising strategies for the storage of intermittent renewable energy resources. The development of electrocatalysts with high activity and stability is vital in the electrochemical CO2 reduction process. In this study, copper and gold alloyed (CuAu) electrodes with nanodendritic structures were synthesized using a facile electrodeposition method. The CuAu nanodendrites with the atomic ratio of Cu to Au being approximately 1:1 demonstrated excellent catalytic activity for the electrochemical reduction of CO2. Syngas, which is utilized as an intermediate in the production of synthetic natural gas, ammonia, and methanol, was the major product obtained under various applied potentials. Electrochemical impedance spectroscopic (EIS) measurements revealed that the CuAu nanodendrtic catalyst had a much lower charge transfer resistance than Cu and Au electrodeposited catalysts. The CuAu nanodendrite catalyst is an intriguing material with potential applications for syngas production from CO2.

参考文献

[1] Hossain M N, Wen J L, Chen A C. Unique copper and reduced graphene oxide nanocomposite toward the efficient electrochemical reduction of carbon dioxide[J]. Sci. Rep., 2017, 7(1): 3184-3193.
[2] Zhang D B, Tao Z T, Feng F L, He B B, Zhou W, Sun J, Xu J M, Wang Q, Zhao L. High efficiency and selectivity from synergy: Bi nanoparticles embedded in nitrogen doped porous carbon for electrochemical reduction of CO2 to formate[J]. Electrochim. Acta., 2020, 334: 135563.
[3] Huang J Z, Guo X R, Huang X J, Wang L S. Metal (Sn, Bi, Pb, Cd) in-situ anchored on mesoporous hollow kapok-tubes for outstanding electrocatalytic CO2 reduction to formate[J]. Electrochim. Acta., 2019, 325: 134923.
[4] Ensafi A A, Alinajafi H A, Rezaei B. Pt-modified nitrogen doped reduced graphene oxide: A powerful electrocatalyst for direct CO2 reduction to methanol[J]. J. Electroanal. Chem., 2016, 78: 382-89.
[5] Ye S T, Fan G L, Xu J J, Yang L, Li F. Nickel-nitrogen-modified porous carbon/carbon nanotube hybrid with necklace-like geometry: An efficient and durable electrocatalyst for selective reduction of CO2 to CO in a wide negative potential region[J]. Electrochim. Acta., 2020, 334: 135583.
[6] Ross M B, De Luna P, Li Y, Dinh C T, Kim D, Yang P, Sargent E H. Designing materials for electrochemical carbon dioxide recycling[J]. Nat. Catal., 2019, 2(8): 648-658.
[7] Gao D, Arán-Ais R M, Jeon H S, Roldan Cuenya B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products[J]. Nat. Catal., 2019, 2(3): 198-210.
[8] Zhu S Q, Wang Q, Qin X P, Gu M, Tao R, Lee B P, Zhang L L, Yao Y Z, Li T H, Shao M H. Tuning structural and compositional effects in Pd-Au nanowires for highly selective and active CO2 electrochemical reduction reaction[J]. Adv. Energ. Mater., 2018, 8(32): 1802238.
[9] Xu S, Carter E A. Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction[J]. Chem. Rev., 2018, 119(11): 6631-6669.
[10] Raciti D, Wang C. Electrochemical alternative to Fischer-Tropsch[J]. Nat. Catal., 2018, 1(10): 741-742.
[11] De Luna P, Quintero-Bermudez R, Dinh C T, Ross M B, Bushuyev O S, Todoroviĉ P, Regier T, Kelley S O, Yang P, Sargent E H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction[J]. Nat. Catal., 2018, 1(2): 103-110.
[12] Yi Q, Li W Y, Feng J, Xie K C. Carbon cycle in advanced coal chemical engineering[J]. Chem. Soc. Rev., 2015, 44(15): 5409-5445.
[13] Bui M, Adjiman C S, Bardow A, Anthony E J, Boston A, Brown S, Fennell P S, Fuss S, Galindo A, Hackett L A, Hallett J P, Herzog H J, Jackson G, Kemper J, Krevor S, Maitland G C, Matuszewski M, Metcalfe I S, Petit C, Puxty G, Reimer J, Reiner D M, Rubin E S, Scott S A, Shah N, Smit B, Trusler J P M, Webley P, Wilcox J, Mac Dowell N. Carbon capture and storage (CCS): the way forward[J]. Energ. Environ. Sci., 2018, 11(5): 1062-1176.
[14] Ho H J, Iizuka A, Shibata E. Carbon capture and utilization technology without carbon dioxide purification and pressurization: a review on its necessity and available technologies[J]. Ind. Eng. Chem. Res., 2019, 58(21): 8941-8954.
[15] Hurst T F, Cockerill T T, Florin N H. Life cycle greenhouse gas assessment of a coal-fired power station with calcium looping CO2 capture and offshore geological storage[J]. Energ. Environ. Sci., 2012, 5(5): 7132-7150.
[16] Lamaison S, Wakerley D, Montero D, Rousse G, Taverna D, Giaume D, Mercier D, Blanchard J, Tran H N, Fontecave M, Mougel V. Zn-Cu alloy nanofoams as efficient catalysts for the reduction of CO2 to syngas mixtures with a potential-independent H2/CO ratio[J]. ChemSusChem, 2019, 12(2): 511-517.
[17] Chen P, Jiao Y, Zhu Y H, Chen S-M, Song L, Jaroniec M, Zheng Y, Qiao S Z. Syngas production from electrocatalytic CO2 reduction with high energetic efficiency and current density[J]. J. Mater. Chem. A, 2019, 7(13): 7675-7682.
[18] Pletcher D. The cathodic reduction of carbon dioxide—What can it realistically achieve? A mini review[J]. Electrochem. Commun., 2015, 61(1): 97-101.
[19] Qiao J L, Liu Y Y, Hong F, Zhang J J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chem. Soc. Rev., 2014, 43(2): 631-675.
[20] Tryk D A, Fujishima A. Global warming electrochemists enlisted in war: the carbon dioxide reduction battle[J]. Electrochem. Soc. Interface, 2001, 10(1): 32-36.
[21] Chaplin R P S, Wragg A A. Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation[J]. J. Appl. Electrochem., 2003, 33(12): 1107-1123.
[22] Li J H (李金翰), Cheng F Y (程方益). Electrolyte tailoring for electrocatalytic reduction of stable molecules[J]. J. Electrochem.(电化学), 2020, 26(4): 474-485.
[23] Ross M B, Dinh C T, Li Y, Kim D, De Luna P, Sargent E H, Yang P. Tunable Cu enrichment enables designer syngas electrosynjournal from CO2[J]. J. Am. Chem. Soc., 2017, 139(27): 9359-9363.
[24] Hori Y, Wakebe H, Tsukamoto T, Koga O. Electrocataly-tic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media[J]. Electrochim. Acta., 1994, 39(11): 1833-1839.
[25] Furuya N, Yamazaki T, Shibata M. High performance RuPd catalysts for CO2 reduction at gas-diffusion electrodes[J]. J. Electroanal. Chem., 1997, 431(1): 39-41.
[26] Zhang T, Verma S, Kim S, Fister T T, Kenis P J A, Gewirth A A. Highly dispersed, single-site copper catalysts for the electroreduction of CO2 to methane[J]. J. Ele-ctroanal. Chem., 2020, 875: 113862.
[27] Yang F (杨帆), Deng P L (邓培林), Han Y J (韩优嘉), Pan J (潘静), Xiao B Y (夏宝玉). Copper-based compounds for electrochemical reduction of carbon dioxide[J]. J. Ele-ctrochem.(电化学), 2019, 25(4): 426-444.
[28] Zhang X R (张旭锐), Liu Y Y (刘予宇), Shao X L (邵晓琳), Yi J (易金), Zhang J J (张久俊). Challenges and strategies in the development of low-temperature carbon dioxide electroreduction technology[J]. J. Electrochem.(电化学), 2019, 25(4): 413-425.
[29] Welch A J, DuChene J S, Tagliabue G, Davoyan A, Cheng W H, Atwater H A. Nanoporous gold as a highly selective and active carbon dioxide reduction catalyst[J]. ACS Appl. Energ. Mater., 2019, 2(1): 164-170.
[30] Zhu W L, Michalsky R, Metin Ö, Lv H, Guo S, Wright C J, Sun X, Peterson A A, Sun S H. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO[J]. J. Am. Chem. Soc., 2013, 135(45): 16833-16836.
[31] Chen Y, Li C W, Kanan M W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles[J]. J. Am. Chem. Soc., 2012, 134(49): 19969-19972.
[32] Nesbitt N T, Ma M, Trzešniewski B J, Jaszewski S, Tafti F, Burns M J, Smith W A, Naughton M J. Au dendrite electrocatalysts for CO2 electrolysis[J]. J. Phys. Chem. C, 2018, 122(18): 10006-10016.
[33] Wen X S, Chang L, Gao Y, Han J Y, Bai Z M, Huan Y H, Li M H, Tang Z Y, Yan X Q. A reassembled nanoporous gold leaf electrocatalyst for efficient CO2 reduction towards CO[J]. Inorg. Chem. Front., 2018, 5(5): 1207-1212.
[34] Zhu W L, Zhang Y J, Zhang H Y, Lv H F, Li Q, Michalsky R, Peterson A A, Sun S H. Active and selective conversion of CO2 to CO on ultrathin Au nanowires[J]. J. Am. Chem. Soc., 2014, 136(46): 16132-16135.
[35] Chen C Z, Zhang B, Zhong J H, Cheng Z M. Selective electrochemical CO2 reduction over highly porous gold films[J]. J. Mater. Chem. A, 2017, 5(41): 21955-21964.
[36] Rogers C, Perkins W S, Veber G, Williams T E, Cloke R R, Fischer F R. Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes[J]. J. Am. Chem. Soc., 2017, 139(11): 4052-4061.
[37] Narayanaru S, Chinnaiah J, Phani K L, Scholz F. pH dependent CO adsorption and roughness-induced selectivity of CO2 electroreduction on gold surfaces[J]. Electrochim. Acta., 2018, 264: 269-274.
[38] Chen S, Chen A C. Electrochemical reduction of carbon dioxide on Au nanoparticles: An in situ FTIR study[J]. J. Phys. Chem. C, 2019, 123(39): 23898-23906.
[39] Hossain M N, Liu Z, Wen J L, Chen A C. Enhanced catalytic activity of nanoporous Au for the efficient electrochemical reduction of carbon dioxide[J]. Appl. Catal. B, 2018, 236: 483-489.
[40] Dong H, Li Y, Jiang D E. First-principles insight into electrocatalytic reduction of CO2 to CH4 on a copper nanoparticle[J]. J. Phys. Chem. C, 2018, 122(21): 11392-11398.
[41] Sen S, Liu D, Palmore G T R. Electrochemical reduction of CO2 at copper nanofoams[J]. ACS Catal., 2014, 4(9): 3091-3095.
[42] Raciti D, Wang C. Recent advances in CO2 reduction electrocatalysis on copper[J]. ACS Energy Lett., 2018, 3(7): 1545-1556.
[43] Mistry H, Varela A S, Bonifacio C S, Zegkinoglou I, Sinev I, Choi Y W, Kisslinger K, Stach E A, Yang J C, Strasser P, Cuenya B R. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nat. Commun., 2016, 7(1): 12123.
[44] Dai L, Qin Q, Wang P, Zhao X J, Hu C Y, Liu P X, Qin R X, Chen M, Ou D H, Xu C F, Mo S G, Wu B H, Fu G, Zhang P, Zheng N F. Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide[J]. Sci. Adv., 2017, 3(9): e1701069.
[45] Raciti D, Livi K J, Wang C. Highly dense Cu nanowires for low-overpotential CO2 reduction[J]. Nano Lett., 2015, 15(10): 6829-6835.
[46] Li C W, Kanan M W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films[J]. J. Am. Chem. Soc., 2012, 134(17): 7231-7234.
[47] Ren D, Deng Y, Handoko A D, Chen C S, Malkhandi S, Yeo B S. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts[J]. ACS Catal., 2015, 5(5): 2814-2821.
[48] Hori Y, Murata A, Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution[J]. J. Chem. Soc., Faraday Trans.1, 1989, 85(8): 2309-2326.
[49] Kas R, Kortlever R, Yilmaz H, Koper M T M, Mul G. Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions[J]. ChemElectroChem, 2015, 2(3): 354-358.
[50] Velasco-Vélez J-J, Jones T, Gao D, Carbonio E, Arrigo R, Hsu C J, Huang Y C, Dong C L, Chen J M, Lee J F, Strasser P, Roldan Cuenya B, Schlögl R, Knop-Gericke A, Chuang C H. The role of the copper oxidation state in the electrocatalytic reduction of CO2 into valuable hydrocarbons[J]. ACS Sustain. Chem. Eng., 2019, 7(1): 1485-1492.
[51] Nur Hossain M, Chen S, Chen A. Thermal-assisted synjournal of unique Cu nanodendrites for the efficient electrochemical reduction of CO2[J]. Appl. Catal. B, 2019, 259: 118096-118104.
[52] Hossain M N, Wen J L, Konda S K, Govindhan M, Chen A C. Electrochemical and FTIR spectroscopic study of CO2 reduction at a nanostructured Cu/reduced graphene oxide thin film[J]. Electrochem. Commun., 2017, 82: 16-20.
[53] Zhang B H (张宝花), Zhang J T (张进涛). Regulation of copper surface via redox reaction for enhancing carbon dioixide electroreduction[J]. J. Electrochem.(电化学), 2019, 25(4): 497-503.
[54] Sartin M, Chen W(陈微), Chen Y X(陈艳霞), He F(贺凡). Recent progress in the mechanistic understanding of CO2 reduction on copper [J]. J. Electrochem.(电化学), 2020, 26(1): 41-53.
[55] Christophe J, Doneux T, Buess-Herman C. Electroreduction of carbon dioxide on copper-based electrodes: activity of copper single crystals and copper-gold alloys[J]. Electrocatalysis, 2012, 3(2): 139-146.
[56] Jia F L, Yu X X, Zhang L Z. Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu-Au alloy as catalyst[J]. J. Power Sources, 2014, 252: 85-89.
[57] Kim D, Resasco J, Yu Y, Asiri A M, Yang P D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles[J]. Nat. Commun., 2014, 5(1): 4948-4956.
[58] Monzó J, Malewski Y, Kortlever R, Vidal-Iglesias F J, Solla-Gullón J, Koper M T M, Rodriguez P. Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction[J]. J. Mater. Chem. A, 2015, 3(47): 23690-23698.
[59] Kim D, Xie C L, Becknell N, Yu Y, Karamad M, Chan K, Crumlin E J, Nörskov J K, Yang P D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles[J]. J. Am. Chem. Soc., 2017, 139(24): 8329-8336.
[60] Pander Iii J E, Ren D, Yeo B S. Practices for the collection and reporting of electrocatalytic performance and mechanistic information for the CO2 reduction reaction[J]. Catal. Sci. Tech., 2017, 7(24): 5820-5832.
[61] Zhu W J, Zhang L, Yang P P, Hu C L, Dong H, Zhao Z J, Mu R T, Gong J L. Formation of enriched vacancies for enhanced CO2 electrocatalytic reduction over AuCu alloys[J]. ACS Energy Lett., 2018, 3(9): 2144-2149.
[62] Gao J, Ren D, Guo X Y, Zakeeruddin S M, Grötzel M. Sequential catalysis enables enhanced C-C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts[J]. Faraday Discuss., 2019, 215: 282-296.
文章导航

/