铂和钯上丙三醇电氧化研究进展:从反应机理到催化材料
收稿日期: 2021-02-21
修回日期: 2021-03-26
网络出版日期: 2021-04-10
版权
Recent Advances in Glycerol Electrooxidation on Pt and Pd: from Reaction Mechanisms to Catalytic Materials
Received date: 2021-02-21
Revised date: 2021-03-26
Online published: 2021-04-10
Copyright
生物柴油工业的蓬勃发展带来大量副产品丙三醇(甘油),因此如何将甘油转化为高附加值产品具有重要的研究价值。在各种方法中, 电催化氧化由于其条件温和、环境友好和高效率而备受关注。然而,甘油的电氧化非常复杂,涉及许多反应途径和多个电子和质子转移过程,如何合理设计对目标产物具有高选择性的催化剂是很大的挑战。在本文中, 我们主要概述了铂和钯基催化剂上甘油电氧化研究的最新进展。我们首先总结了基于原位和在线谱学研究以及理论计算获得的影响其电催化活性和选择性的因素。然后,选择代表性文献来说明这些因素如何应用于研制高效甘油电氧化催化剂。最后,提出了未来研究中要解决的关键问题。
张伟艺 , 马宪印 , 邹受忠 , 蔡文斌 . 铂和钯上丙三醇电氧化研究进展:从反应机理到催化材料[J]. 电化学, 2021 , 27(3) : 233 -256 . DOI: 10.13208/j.electrochem.201252
The conversion of glycerol to value-added products has received considerable attention recently because the booming biodiesel industry produces a large amount of glycerol as a byproduct. Among various means, electrocatalytic oxidation of glycerol is appealing owing to its environmental friendliness and high efficiency. However, electrooxidation of glycerol is very complex, involving multiple electron and proton transfer processes with many reaction pathways. How to rationally design catalysts with high selectivity toward targeted products is an overarching challenge, and of both fundamental and practical significance. In this minireview we aim to provide an overview of recent advancements in electrooxidation of glycerol focusing mainly on Pt- and Pd-based catalysts. We start with summarizing fundamental understandings of factors dictating catalytic activity and selectivity garnered from in-situ and online spectrometric experimental studies as well as from theoretical works. We then use selective examples to demonstrate how these factors are manifested in the development of highly efficient glycerol electrooxidation catalysts. Finally, we summarize the key issues to be addressed in future studies.
[1] | Chen Y X, Lavacchi A, Miller H A, Bevilacqua M, Filippi J, Innocenti M, Marchionni A, Oberhauser W, Wang L, Vizza F. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis[J]. Nat. Commun., 2014, 5(1): 4036. |
[2] | Xu Y, Zhang B. Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions[J]. ChemElectroChem, 2019, 6(13): 3214-3226. |
[3] | Garlyyev B, Xue S, Fichtner J, Bandarenka A S, Andronescu C. Prospects of value-added chemicals and hydrogen via electrolysis[J]. ChemSusChem, 2020, 13(10): 2513-2521. |
[4] | Miller H A, Lavacchi A, Vizza F. Storage of renewable energy in fuels and chemicals through electrochemical reforming of bioalcohols[J]. Curr. Opin. Electrochem., 2020, 21: 140-145. |
[5] | Holade Y, Tuleushova N, Tingry S, Servat K, Napporn T W, Guesmi H, Cornu D, Kokoh K B. Recent advances in the electrooxidation of biomass-based organic molecules for energy, chemicals and hydrogen production[J]. Catal. Sci. Technol., 2020, 10(10): 3071-3112. |
[6] | Houache M S E, Hughes K, Baranova E A. Study on catalyst selection for electrochemical valorization of glycerol[J]. Sustain. Energy Fuels, 2019, 3(8): 1892-1915. |
[7] | Katryniok B, Kimura H, Skrzyńska E, Girardon J S, Fongarland P, Capron M, Ducoulombier R, Mimura N, Paul S, Dumeignil F. Selective catalytic oxidation of glycerol: perspectives for high value chemicals[J]. Green Chem., 2011, 13(8): 1960-1979. |
[8] | Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F. Improved utilisation of renewable resources: New important derivatives of glycerol[J]. Green Chem., 2008, 10(1): 13-30. |
[9] | Katryniok B, Paul S, Dumeignil F. Recent developments in the field of catalytic dehydration of glycerol to acrolein[J]. ACS Catal., 2013, 3(8): 1819-1834. |
[10] | Zhou C H, Beltramini J N, Fan Y X, Lu G Q. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals[J]. Chem. Soc. Rev., 2008, 37(3): 527-549. |
[11] | Bagheri S, Julkapli N M, Yehye W A. Catalytic conversion of biodiesel derived raw glycerol to value added products[J]. Renew. Sust. Energ. Rev., 2015, 41: 113-127. |
[12] | Nda-Umar U, Ramli I, Taufiq-Yap Y, Muhamad E. An overview of recent research in the conversion of glycerol into biofuels, fuel additives and other bio-based chemicals[J]. Catalysts, 2018, 9(1): 15. |
[13] | Simões M, Baranton S, Coutanceau C. Electrochemical valorisation of glycerol[J]. ChemSusChem, 2012, 5(11): 2106-2124. |
[14] | Dodekatos G, Schünemann S, Tüysüz H. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation[J]. ACS Catal., 2018, 8(7): 6301-6333. |
[15] | Talebian-Kiakalaieh A, Amin N A S, Rajaei K, Tarighi S. Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes[J]. Appl. Energy, 2018, 230: 1347-1379. |
[16] | Coutanceau C, Baranton S, Kouamé R S B. Selective electrooxidation of glycerol into value-added chemicals: A short overview[J]. Front. Chem., 2019, 7: 100. |
[17] | Rahim S A N M, Lee C S, Abnisa F, Aroua M K, Daud W A W, Cognet P, Pérès Y. A review of recent developments on kinetics parameters for glycerol electrochemical conversion - A by-product of biodiesel[J]. Sci. Total Environ., 2020, 705: 135137. |
[18] | Antolini E. Glycerol electro-oxidation in alkaline media and alkaline direct glycerol fuel cells[J]. Catalysts, 2019, 9(12): 980. |
[19] | Alaba P A, Lee C S, Abnisa F, Aroua M K, Cognet P, Pérès Y, Wan Daud W M A. A review of recent progress on electrocatalysts toward efficient glycerol electrooxidation[J]. Rev. Chem. Eng., 2020: 20190013. |
[20] | Braunberger T L, Nahhas A F, Katz L M, Sadrieh N, Lim H W. Dihydroxyacetone: A review[J]. J. Drugs Dermatol., 2018, 17(4): 387-391. |
[21] | Sharad J. Glycolic acid peel therapy - a current review[J]. Clin. Cosmet. Investig. Dermatol., 2013, 6: 281-288. |
[22] | Johnson D T, Taconi K A. The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production[J]. Environ. Prog., 2007, 26(4): 338-348. |
[23] | Fernández P S, Fernandes Gomes J, Angelucci C A, Tereshchuk P, Martins C A, Camara G A, Martins M E, Da Silva J L F, Tremiliosi-Filho G. Establishing a link between well-ordered Pt(100) surfaces and real systems: How do random superficial defects influence the electro-oxidation of glycerol?[J]. ACS Catal., 2015, 5(7): 4227-4236. |
[24] | Garcia A C, Kolb M J, van Nierop y Sanchez C, Vos J, Birdja Y Y, Kwon Y, Tremiliosi-Filho G, Koper M T M. Strong impact of platinum surface structure on primary and secondary alcohol oxidation during electro-oxidation of glycerol[J]. ACS Catal., 2016, 6(7): 4491-4500. |
[25] | Kwon Y, Birdja Y, Spanos I, Rodriguez P, Koper M T M. Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth[J]. ACS Catal., 2012, 2(5): 759-764. |
[26] | de Souza M B C, Vicente R A, Yukuhiro V V Y, V. M. T. Pires C T G, Cheuquepán W, Bott-Neto J L, Solla-Gullón J, Fernández P S. Bi-modified Pt electrodes toward glycerol electrooxidation in alkaline solution: Effects on activity and selectivity[J]. ACS Catal., 2019, 9(6): 5104-5110. |
[27] | de Souza M B C, Yukuhiro V Y, Vicente R A, Vilela Menegaz Teixeira Pires C T G, Bott-Neto J L, Fernández P S. Pb- and Bi-modified Pt electrodes toward glycerol electrooxidation in alkaline media. Activity, selectivity, and the importance of the Pt atoms arrangement[J]. ACS Catal., 2020, 10(3): 2131-2137. |
[28] | Gomes J F, Tremiliosi-Filho G. Spectroscopic studies of the glycerol electro-oxidation on polycrystalline Au and Pt surfaces in acidic and alkaline media[J]. Electrocatalysis, 2011, 2(2): 96-105. |
[29] | Fernández P S, Martins M E, Camara G A. New insights about the electro-oxidation of glycerol on platinum nanoparticles supported on multi-walled carbon nanotubes[J]. Electrochim. Acta, 2012, 66: 180-187. |
[30] | Fernández P S, Martins M E, Martins C A, Camara G A. The electro-oxidation of isotopically labeled glycerol on platinum: New information on C-C bond cleavage and CO2 production[J]. Electrochem. Commun., 2012, 15(1): 14-17. |
[31] | Fernández P S, Martins C A, Martins M E, Camara G A. Electrooxidation of glycerol on platinum nanoparticles: Deciphering how the position of each carbon affects the oxidation pathways[J]. Electrochim. Acta, 2013, 112: 686-691. |
[32] | Fernández P S, Tereshchuk P, Angelucci C A, Gomes J F, Garcia A C, Martins C A, Camara G A, Martins M E, Da Silva J L F, Tremiliosi-Filho G. How do random superficial defects influence the electro-oxidation of glycerol on Pt(111) surfaces?[J]. Phys. Chem. Chem. Phys., 2016, 18(36): 25582-25591. |
[33] | Schnaidt J, Heinen M, Denot D, Jusys Z, Jürgen Behm R. Electrooxidation of glycerol studied by combined in situ IR spectroscopy and online mass spectrometry under continuous flow conditions[J]. J. Electroanal. Chem., 2011, 661(1): 250-264. |
[34] | Huang L, Sun J Y, Cao S H, Zhan M, Ni Z R, Sun H J, Chen Z, Zhou Z Y, Sorte E G, Tong Y J, Sun S G. Combined EC-NMR and in situ FTIR spectroscopic studies of glycerol electrooxidation on Pt/C, PtRu/C, and PtRh/C[J]. ACS Catal., 2016, 6(11): 7686-7695. |
[35] | Sandrini R M L M, Sempionatto J R, Herrero E, Feliu J M, Souza-Garcia J, Angelucci C A. Mechanistic aspects of glycerol electrooxidation on Pt(111) electrode in alkaline media[J]. Electrochem. Commun., 2018, 86: 149-152. |
[36] | Sandrini R M L M, Sempionatto J R, Tremiliosi-Filho G, Herrero E, Feliu J M, Souza-Garcia J, Angelucci C A. Electrocatalytic oxidation of glycerol on platinum single crystals in alkaline media[J]. ChemElectroChem, 2019, 6(16): 4238-4245. |
[37] | Gomes J F, de Paula F B C, Gasparotto L H S, Tremiliosi-Filho G. The influence of the Pt crystalline surface orientation on the glycerol electro-oxidation in acidic media[J]. Electrochim. Acta, 2012, 76: 88-93. |
[38] | Holade Y, Morais C, Servat K, Napporn T W, Kokoh K B. Toward the electrochemical valorization of glycerol: Fourier transform infrared spectroscopic and chromatographic studies[J]. ACS Catal., 2013, 3(10): 2403-2411. |
[39] | Zalineeva A, Baranton S, Coutanceau C. How do Bi-mo-dified palladium nanoparticles work towards glycerol electrooxidation? Anin situ FTIR study[J]. Electrochim. Acta, 2015, 176: 705-717. |
[40] | Coutanceau C, Zalineeva A, Baranton S, Simoes M. Modification of palladium surfaces by bismuth adatoms or clusters: Effect on electrochemical activity and selectivity towards polyol electrooxidation[J]. Int. J. Hydrogen Energy, 2014, 39(28): 15877-15886. |
[41] | Garcia A C, Birdja Y Y, Tremiliosi-Filho G, Koper M T M. Glycerol electro-oxidation on bismuth-modified platinum single crystals[J]. J. Catal., 2017, 346: 117-124. |
[42] | Araujo H R, Zanata C R, Teixeira-Neto E, de Lima R B, Batista B C, Giz M J, Camara G A. How the adsorption of Sn on Pt (100) preferentially oriented nanoparticles affects the pathways of glycerol electro-oxidation[J]. Electrochim. Acta, 2019, 297: 61-69. |
[43] | Jeffery D Z, Camara G A. The formation of carbon dioxide during glycerol electrooxidation in alkaline media: First spectroscopic evidences[J]. Electrochem. Commun., 2010, 12(8): 1129-1132. |
[44] | Leung L W H, Weaver M J. Influence of adsorbed carbon monoxide on electrocatalytic oxidation of simple organic molecules at platinum and palladium electrodes in acidic solution: A survey using real-time FTIR spectroscopy[J]. Langmuir, 1990, 6(2): 323-333. |
[45] | Kwon Y, Schouten K J P, Koper M T M. Mechanism of the catalytic oxidation of glycerol on polycrystalline gold and platinum electrodes[J]. ChemCatChem, 2011, 3(7): 1176-1185. |
[46] | Kwon Y, Koper M T M. Combining voltammetry with HPLC: Application to electro-oxidation of glycerol[J]. Anal. Chem., 2010, 82(13): 5420-5424. |
[47] | Kwon Y, Hersbach T J P, Koper M T M. Electro-oxidation of glycerol on platinum modified by adatoms: Activity and selectivity effects[J]. Top. Catal., 2014, 57(14): 1272-1276. |
[48] | Roquet L, Belgsir E M, Léger J M, Lamy C. Kinetics and mechanisms of the electrocatalytic oxidation of glycerol as investigated by chromatographic analysis of the reaction products: Potential and pH effects[J]. Electrochim. Acta, 1994, 39(16): 2387-2394. |
[49] | Marchionni A, Bevilacqua M, Bianchini C, Chen Y X, Filippi J, Fornasiero P, Lavacchi A, Miller H, Wang L, Vizza F. Electrooxidation of ethylene glycol and glycerol on Pd-(Ni-Zn)/C anodes in direct alcohol fuel cells[J]. ChemSusChem, 2013, 6(3): 518-528. |
[50] | Liu Y, Yu W, Raciti D, Gracias D H, Wang C. Electrocatalytic oxidation of glycerol on platinum[J]. J. Phys. Chem. C, 2019, 123(1): 426-432. |
[51] | Fernández P S, Martins C A, Angelucci C A, Gomes J F, Camara G A, Martins M E, Tremiliosi-Filho G. Evidence for independent glycerol electrooxidation behavior on different ordered domains of polycrystalline platinum[J]. ChemElectroChem, 2015, 2(2): 263-268. |
[52] | Liu B, Gao F. Navigating glycerol conversion roadmap and heterogeneous catalyst selection aided by density functional theory: A review[J]. Catalysts, 2018, 8(2): 44. |
[53] | Liu B, Greeley J. Decomposition pathways of glycerol via C-H, O-H, and C-C bond scission on Pt(111): A density functional theory study[J]. J. Phys. Chem. C, 2011, 115(40): 19702-19709. |
[54] | Liu B, Greeley J. A density functional theory analysis of trends in glycerol decomposition on close-packed transition metal surfaces[J]. Phys. Chem. Chem. Phys., 2013, 15(17): 6475-6485. |
[55] | Liu B, Greeley J. Density functional theory study of selectivity considerations for C-C versus C-O bond scission in glycerol decomposition on Pt(111)[J]. Top. Catal., 2012, 55(5): 280-289. |
[56] | Valter M, Busch M, Wickman B, Grönbeck H, Baltrusaitis J, Hellman A. Electrooxidation of glycerol on gold in acidic medium: A combined experimental and DFT study[J]. J. Phys. Chem. C, 2018, 122(19): 10489-10494. |
[57] | Valter M, dos Santos E C, Pettersson L G M, Hellman A. Partial electrooxidation of glycerol on close-packed transition metal surfaces: Insights from first-principles calculations[J]. J. Phys. Chem. C, 2020, 124(33): 17907-17915. |
[58] | Hammer B, Nørskov J K. Why gold is the noblest of all the metals[J]. Nature, 1995, 376(6537): 238-240. |
[59] | Hammer B, Nørskov J K. Electronic factors determining the reactivity of metal surfaces[J]. Surf. Sci., 1995, 343(3): 211-220. |
[60] | Hammer B, Nørskov J K. Theoretical surface science and catalysis-calculations and concepts[M]//Advances in Ca-talysis, Academic Press, 2000: 71-129. |
[61] | Nørskov J K, Bligaard T, Rossmeisl J, Christensen C H. Towards the computational design of solid catalysts[J]. Nat. Chem., 2009, 1(1): 37-46. |
[62] | Kim H J, Choi S M, Green S, Tompsett G A, Lee S H, Huber G W, Kim W B. Highly active and stable PtRuSn/C catalyst for electrooxidations of ethylene glycol and glycerol[J]. Appl. Catal., B, 2011, 101(3): 366-375. |
[63] | Gomes J F, Martins C A, Giz M J, Tremiliosi-Filho G, Camara G A. Insights into the adsorption and electro-oxidation of glycerol: Self-inhibition and concentration effects[J]. J. Catal., 2013, 301: 154-161. |
[64] | González-Cobos J, Baranton S, Coutanceau C. Development of bismuth-modified PtPd nanocatalysts for the electrochemical reforming of polyols into hydrogen and value-added chemicals[J]. ChemElectroChem, 2016, 3(10): 1694-1704. |
[65] | Wang C Y, Yu Z Y, Li G, Song Q T, Li G, Luo C X, Yin S H, Lu B A, Xiao C, Xu B B, Zhou Z Y, Tian N, Sun S G. Intermetallic PtBi nanoplates with high catalytic activity towards electro-oxidation of formic acid and glycerol[J]. ChemElectroChem, 2020, 7(1): 239-245. |
[66] | Kouamé B S R, Baranton S, Brault P, Canaff C, Chamorro-Coral W, Caillard A, De Oliveira Vigier K, Coutanceau C. Insights on the unique electro-catalytic behavior of PtBi/C materials[J]. Electrochim. Acta, 2020, 329: 135161. |
[67] | González-Cobos J, Baranton S, Coutanceau C. A systematicin situ infrared study of the electrooxidation of C3 alcohols on carbon-supported Pt and Pt-Bi catalysts[J]. J. Phys. Chem. C, 2016, 120(13): 7155-7164. |
[68] | Falase A, Main M, Garcia K, Serov A, Lau C, Atanassov P. Electrooxidation of ethylene glycol and glycerol by platinum-based binary and ternary nano-structured catalysts[J]. Electrochim. Acta, 2012, 66: 295-301. |
[69] | Kim Y, Kim H W, Lee S, Han J, Lee D, Kim J R, Kim T W, Kim C U, Jeong S Y, Chae H J, Kim B S, Chang H, Kim W B, Choi S M, Kim H J. The role of ruthenium on carbon-supported PtRu catalysts for electrocatalytic glycerol oxidation under acidic conditions[J]. ChemCatChem, 2017, 9(9): 1683-1690. |
[70] | Tam B, Duca M, Wang A, Fan M, Garbarino S, Guay D. Promotion of glycerol oxidation by selective Ru decoration of (100) domains at nanostructured Pt electrodes[J]. ChemElectroChem, 2019, 6(6): 1784-1793. |
[71] | Zhou Y F, Shen Y, Piao J H. Sustainable conversion of glycerol into value-added chemicals by selective electro-oxidation on Pt-based catalysts[J]. ChemElectroChem, 2018, 5(13): 1636-1643. |
[72] | Alencar L M, Martins C A. Decorating Pt/C nanoparticles with Ru by wall-jet configuration: The role of coverage degree on the catalyst activity for glycerol electrooxidation[J]. Electroanalysis, 2018, 30(9): 2167-2175. |
[73] | Kim H J, Choi S M, Seo M H, Green S, Huber G W, Kim W B. Efficient electrooxidation of biomass-derived glycerol over a graphene-supported PtRu electrocatalyst[J]. Electrochem. Commun., 2011, 13(8): 890-893. |
[74] | Palma L M, Almeida T S, Morais C, Napporn T W, Kokoh K B, de Andrade A R. Effect of co-catalyst on the selective electrooxidation of glycerol over ruthenium-based nanomaterials[J]. ChemElectroChem, 2017, 4(1): 39-45. |
[75] | Zakaria K, McKay M, Thimmappa R, Hasan M, Mamlouk M, Scott K. Direct glycerol fuel cells: Comparison with direct methanol and ethanol fuel cells[J]. ChemEle-ctroChem, 2019, 6(9): 2578-2585. |
[76] | Da Silva R G, Aquino Neto S, Kokoh K B, De Andrade A R. Electroconversion of glycerol in alkaline medium: From generation of energy to formation of value-added products[J]. J. Power Sources, 2017, 351: 174-182. |
[77] | Bhunia K, Khilari S, Pradhan D. Monodispersed PtPdNi trimetallic nanoparticles-integrated reduced graphene oxide hybrid platform for direct alcohol fuel cell[J]. ACS Sustain. Chem. Eng., 2018, 6(6): 7769-7778. |
[78] | Lee S, Kim H J, Choi S M, Seo M H, Kim W B. The promotional effect of Ni on bimetallic PtNi/C catalysts for glycerol electrooxidation[J]. Appl. Catal., A, 2012, 429-430: 39-47. |
[79] | Zhang N, Zhu Y M, Shao Q, Zhu X, Huang X Q. Ternary PtNi/PtxPb/Pt core/multishell nanowires as efficient and stable electrocatalysts for fuel cell reactions[J]. J. Mater. Chem. A, 2017, 5(36): 18977-18983. |
[80] | Kim Y, Kim H, Kim W B. PtAg nanotubes for electrooxidation of ethylene glycol and glycerol in alkaline media[J]. Electrochem. Commun., 2014, 46: 36-39. |
[81] | Zhou Y F, Shen Y, Xi J Y, Luo X L. Selective electro-oxidation of glycerol to dihydroxyacetone by PtAg skeletons[J]. ACS Appl. Mater. Interfaces, 2019, 11(32): 28953-28959. |
[82] | Garcia A C, Ferreira E B, Silva de Barros V V, Linares J J, Tremiliosi-Filho G. PtAg/MnOx/C as a promising electrocatalyst for glycerol electro-oxidation in alkaline medium[J]. J. Electroanal. Chem., 2017, 793: 188-196. |
[83] | Zhou Y F, Shen Y, Xi J Y. Seed-mediated synjournal of PtxAuy@Ag electrocatalysts for the selective oxidation of glycerol[J]. Appl. Catal. B, 2019, 245: 604-612. |
[84] | Rezaei B, Saeidi-Boroujeni S, Havakeshian E, Ensafi A A. Highly efficient electrocatalytic oxidation of glycerol by Pt-Pd/Cu trimetallic nanostructure electrocatalyst supported on nanoporous stainless steel electrode using galvanic replacement[J]. Electrochim. Acta, 2016, 203: 41-50. |
[85] | Lee Y W, Ko A R, Han S B, Kim H S, Park K W. Synjournal of octahedral Pt-Pd alloy nanoparticles for improved catalytic activity and stability in methanol electrooxidation[J]. Phys. Chem. Chem. Phys., 2011, 13(13): 5569-5572. |
[86] | Zhao J, Jing W L, Tan T, Liu X Y, Kang Y M, Wang W. Etching high-Fe-content PtPdFe nanoparticles as efficient catalysts towards glycerol electrooxidation[J]. New J. Chem., 2020, 44(11): 4604-4612. |
[87] | Li D A, Cai K, Wu L, Zuo Y P, Yin W M, Zhang H, Lu Z C, Zhu G L, Han H Y. Ammonia mediated one-step synjournal of three-dimensional porous PtxCu100-x nanochain networks with enhanced electrocatalytic activity toward polyhydric alcohol oxidation[J]. ACS Sustain. Chem. Eng., 2017, 5(11): 11086-11095. |
[88] | Wang A J, Zhang X F, Jiang L Y, Zhang L, Feng J J. Bimetallic alloyed PtCu nanocubic frames with three-dimensional molecular accessible surfaces for boosting oxygen reduction and glycerol oxidation reactions[J]. ChemCatChem, 2018, 10(15): 3319-3326. |
[89] | Xu H, Song P P, Gao F, Shiraishi Y, Du Y K. Hierarchical branched platinum-copper tripods as highly active and stable catalysts[J]. Nanoscale, 2018, 10(17): 8246-8252. |
[90] | Caneppele G L, Almeida T S, Zanata C R, Teixeira-Neto É, Fernández P S, Camara G A, Martins C A. Exponential improving in the activity of Pt/C nanoparticles towards glycerol electrooxidation by Sb ad-atoms deposition[J]. Appl. Catal. B, 2017, 200: 114-120. |
[91] | Scachetti T P, Angelo A C D. Ordered intermetallic nano-structured PtSb/C for production of energy and chemicals[J]. Electrocatalysis, 2015, 6(5): 472-480. |
[92] | Lee S, Kim H J, Lim E J, Kim Y, Noh Y, Huber G W, Kim W B. Highly selective transformation of glycerol to dihydroxyacetone without using oxidants by a PtSb/C-catalyzed electrooxidation process[J]. Green Chem., 2016, 18(9): 2877-2887. |
[93] | Du H Y, Wang K, Tsiakaras P, Shen P K. Excavated and dendritic Pt-Co nanocubes as efficient ethylene glycol and glycerol oxidation electrocatalysts[J]. Appl. Catal. B, 2019, 258: 117951. |
[94] | Silva L S R, López-Suárez F E, Perez-Cadenas M, Santos S F, da Costa L P, Eguiluz K I B, Salazar-Banda G R. Synjournal and characterization of highly active Pbx@Pty/C core-shell nanoparticles toward glycerol electrooxidation[J]. Appl. Catal. B, 2016, 198: 38-48. |
[95] | Zanata C R, Fernández P S, Troiani H E, Soldati A L, Landers R, Camara G A, Carvalho A E, Martins C A. Rh-decorated PtIrOx nanoparticles for glycerol electrooxidation: Searching for a stable and active catalyst[J]. Appl. Catal. B, 2016, 181: 445-455. |
[96] | Ottoni C A, da Silva S G, De Souza R F B, Neto A O. PtAu electrocatalyst for glycerol oxidation reaction using a ATR-FTIR/single direct alkaline glycerol/air cell in situ study[J]. Electrocatalysis, 2016, 7(1): 22-32. |
[97] | Jin C C, Zhu J H, Dong R L, Huo Q S. Improved activity and different performances of reduced graphene oxide-supported Pt nanoparticles modified with a small amount of Au in the electrooxidation of ethylene glycol and glycerol[J]. Electrochim. Acta, 2016, 190: 829-834. |
[98] | Li N, Xia W Y, Xu C W, Chen S. Pt/C and Pd/C catalysts promoted by Au for glycerol and CO electrooxidation in alkaline medium[J]. J. Energy Inst., 2017, 90(5): 725-733. |
[99] | Martins C A, Ibrahim O A, Pei P, Kjeang E. In situ decoration of metallic catalysts in flow-through electrodes: Application of Fe/Pt/C for glycerol oxidation in a microfluidic fuel cell[J]. Electrochim. Acta, 2019, 305: 47-55. |
[100] | Li Z Y, Zhou J, Tang L S, Fu X P, Wei H, Xue M, Zhao Y L, Jia C J, Li X M, Chu H B, Li Y. Hydroxyl-rich ceria hydrate nanoparticles enhancing the alcohol electrooxidation performance of Pt catalysts[J]. J. Mater. Chem. A, 2018, 6(5): 2318-2326. |
[101] | Velázquez-Hernández I, Oropeza-Guzmán M T, Guerra-Balcázar M, Álvarez-Contreras L, Arjona N. Electrocatalytic promotion of Pt nanoparticles by incorporation of Ni(OH)2 for glycerol electro-oxidation: Analysis of activity and reaction pathway[J]. ChemNanoMat, 2019, 5(1): 68-78. |
[102] | Ahmad M S, Cheng C K, Ong H R, Abdullah H, Khan M R. Electro-oxidation of renewable glycerol to value added chemicals over phosphorous-doped Pt/MCNTs nanoparticles[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2019, 702: 012025. |
[103] | Lee D, Kim Y, Kwon Y, Lee J, Kim T W, Noh Y, Kim W B, Seo M H, Kim K, Kim H J. Boosting the electrocatalytic glycerol oxidation performance with highly-dispersed Pt nanoclusters loaded on 3D graphene-like microporous carbon[J]. Appl. Catal, B, 2019, 245: 555-568. |
[104] | Ning X M, Yu H, Peng F, Wang H J. Pt nanoparticles interacting with graphitic nitrogen of N-doped carbon nanotubes: Effect of electronic properties on activity for aerobic oxidation of glycerol and electro-oxidation of CO[J]. J. Catal., 2015, 325: 136-144. |
[105] | Wang W, Jing W L, Wang F X, Liu S J, Liu X Y, Lei Z Q. Amorphous ultra-dispersed Pt clusters supported on nitrogen functionalized carbon: A superior electrocatalyst for glycerol electrooxidation[J]. J. Power Sources, 2018, 399: 357-362. |
[106] | Hersbach T J P, Ye C, Garcia A C, Koper M T M. Tailoring the electrocatalytic activity and selectivity of Pt(111) through cathodic corrosion[J]. ACS Catal., 2020, 10(24): 15104-15113. |
[107] | Zalineeva A, Serov A, Padilla M, Martinez U, Artyushk-ova K, Baranton S, Coutanceau C, Atanassov P B. Self-supported PdxBi catalysts for the electrooxidation of glycerol in alkaline media[J]. J. Am. Chem. Soc., 2014, 136(10): 3937-3945. |
[108] | Simões M, Baranton S, Coutanceau C. Enhancement of catalytic properties for glycerol electrooxidation on Pt and Pd nanoparticles induced by Bi surface modification[J]. Appl. Catal. B, 2011, 110: 40-49. |
[109] | Zalineeva A, Baranton S, Coutanceau C. Bi-modified palladium nanocubes for glycerol electrooxidation[J]. Electrochem. Commun., 2013, 34: 335-338. |
[110] | Simões M, Baranton S, Coutanceau C. Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration[J]. Appl. Catal., B, 2010, 93(3): 354-362. |
[111] | Cai K, Liao Y X, Zhang H, Liu J W, Lu Z C, Huang Z, Chen S L, Han H Y. Controlled synjournal of Au-island-covered Pd nanotubes with abundant heterojunction interfaces for enhanced electrooxidation of alcohol[J]. ACS Appl. Mater. Interfaces, 2016, 8(20): 12792-12797. |
[112] | Mougenot M, Caillard A, Simoes M, Baranton S, Cout-anceau C, Brault P. PdAu/C catalysts prepared by plasma sputtering for the electro-oxidation of glycerol[J]. Appl. Catal., B, 2011, 107(3): 372-379. |
[113] | Qi J, Benipal N, Liang C H, Li W Z. PdAg/CNT catalyzed alcohol oxidation reaction for high-performance anion exchange membrane direct alcohol fuel cell (alcohol = methanol, ethanol, ethylene glycol and glycerol)[J]. Appl. Catal., B, 2016, 199: 494-503. |
[114] | Velázquez-Hernández I, Zamudio E, Rodríguez-Valadez F J, García-Gómez N A, Álvarez-Contreras L, Guerra-Balcäzar M, Arjona N. Electrochemical valorization of crude glycerol in alkaline medium for energy conversion using Pd, Au and PdAu nanomaterials[J]. Fuel, 2020, 262: 116556. |
[115] | Lam B T X, Chiku M, Higuchi E, Inoue H. Preparation of PdAg and PdAu nanoparticle-loaded carbon black catalysts and their electrocatalytic activity for the glycerol oxidation reaction in alkaline medium[J]. J. Power Sources, 2015, 297: 149-157. |
[116] | Yahya N, Kamarudin S K, Karim N A, Masdar M S, Loh K S, Lim K L. Durability and performance of direct glycerol fuel cell with palladium-aurum/vapor grown carbon nanofiber support[J]. Energy Convers. Manage., 2019, 188: 120-130. |
[117] | Li S P, Lai J P, Luque R, Xu G B. Designed multimetallic Pd nanosponges with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation[J]. Energy Environ. Sci., 2016, 9(10): 3097-3102. |
[118] | Holade Y, Morais C, Arrii-Clacens S, Servat K, Napporn T W, Kokoh K B. New preparation of PdNi/C and PdAg/C nanocatalysts for glycerol electrooxidation in alkaline medium[J]. Electrocatalysis, 2013, 4(3): 167-178. |
[119] | Benipal N, Qi J, Liu Q, Li W Z. Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion exchange membrane fuel cells[J]. Appl. Catal., B, 2017, 210: 121-130. |
[120] | Xu H, Song P P, Fernandez C, Wang J, Zhu M, S Shiraishi Y, Du Y K. Sophisticated construction of binary PdPb alloy nanocubes as robust electrocatalysts toward ethylene glycol and glycerol oxidation[J]. ACS Appl. Mater. Interfaces, 2018, 10(15): 12659-12665. |
[121] | Serov A, Asset T, Padilla M, Matanovic I, Martinez U, Roy A, Artyushkova K, Chatenet M, Maillard F, Bayer D, Cremers C, Atanassov P. Highly-active Pd-Cu electrocatalysts for oxidation of ubiquitous oxygenated fuels[J]. Appl. Catal., B, 2016, 191: 76-85. |
[122] | Yang F, Ye J Y, Yuan Q, Yang X T, Xie Z X, Zhao F L, Zhou Z Y, Gu L, Wang X. Ultrasmall Pd-Cu-Pt trimetallic twin icosahedrons boost the electrocatalytic performance of glycerol oxidation at the operating temperature of fuel cells[J]. Adv. Funct. Mater., 2020, 30(11): 1908235. |
[123] | Lv H, Sun L Z, Xu D D, Suib S L, Liu B. One-pot aqueous synjournal of ultrathin trimetallic PdPtCu nanosheets for the electrooxidation of alcohols[J]. Green Chem., 2019, 21(9): 2367-2374. |
[124] | Hong W, Shang C S, Wang J, Wang E K. Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation[J]. Energy Environ. Sci., 2015, 8(10): 2910-2915. |
[125] | Zhou Y F, Shen Y. Selective electro-oxidation of glycerol over Pd and Pt@Pd nanocubes[J]. Electrochem. Commun., 2018, 90: 106-110. |
[126] | Zalineeva A, Serov A, Padilla M, Martinez U, Artyushk-ova K, Baranton S, Coutanceau C, Atanassov P B. Glycerol electrooxidation on self-supported Pd1Snx nanoparticules[J]. Appl. Catal. B, 2015, 176-177: 429-435. |
[127] | Wang W, Kang Y M, Yang Y, Liu Y Q, Chai D, Lei Z Q. PdSn alloy supported on phenanthroline-functionalized carbon as highly active electrocatalysts for glycerol oxidation[J]. Int. J. Hydrogen Energy, 2016, 41(2): 1272-1280. |
[128] | Rostami H, Omrani A, Rostami A A. On the role of electrodeposited nanostructured Pd-Co alloy on Au for the electrocatalytic oxidation of glycerol in alkaline media[J]. Int. J. Hydrogen Energy, 2015, 40(30): 9444-9451. |
[129] | Fashedemi O O, Ozoemena K I. Comparative electrocatalytic oxidation of ethanol, ethylene glycol and glycerol in alkaline medium at Pd-decorated FeCo@Fe/C core-shell nanocatalysts[J]. Electrochim. Acta, 2014, 128: 279-286. |
[130] | Fashedemi O O, Miller H A, Marchionni A, Vizza F, Ozoemena K I. Electro-oxidation of ethylene glycol and glycerol at palladium-decorated FeCo@Fe core-shell nanocatalysts for alkaline direct alcohol fuel cells: Functionalized MWCNT supports and impact on product selectivity[J]. J. Mater. Chem. A, 2015, 3(13): 7145-7156. |
[131] | Palma L M, Almeida T S, Oliveira V L, Tremiliosi-Filho G, Gonzalez E R, de Andrade A R, Servat K, Morais C, Napporn T W, Kokoh K B. Identification of chemicals resulted in selective glycerol conversion as sustainable fuel on Pd-based anode nanocatalysts[J]. RSC Adv., 2014, 4(110): 64476-64483. |
[132] | Zanata C R, Martins C A, Teixeira-Neto É, Giz M J, Camara G A. Two-step synjournal of Ir-decorated Pd nanocubes and their impact on the glycerol electrooxidation[J]. J. Catal., 2019, 377: 358-366. |
[133] | Ferreira Jr R S, Janete Giz M, Camara G A. Influence of the local pH on the electrooxidation of glycerol on palladium-rhodium electrodeposits[J]. J. Electroanal. Chem., 2013, 697: 15-20. |
[134] | Xu C W, Tian Z Q, Shen P K, Jiang S P. Oxide (CeO2, NiO, Co3O3 and Mn3O3)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media[J]. Electrochim. Acta, 2008, 53(5): 2610-2618. |
[135] | Ejikeme P M, Makgopa K, Raju K, Ozoemena K I. Promotional effects of nanodiamond-derived onion-like carbons on the electrocatalytic properties of Pd-MnO2 for the oxidation of glycerol in alkaline medium[J]. Chem-ElectroChem, 2016, 3(12): 2243-2251. |
[136] | Ahmad M S, Singh S, Cheng C K, Ong H R, Abdullah H, Khan M R, Wongsakulphasatch S. Glycerol electro-oxidation to dihydroxyacetone on phosphorous-doped Pd/CNT nanoparticles in alkaline medium[J]. Catal. Commun., 2020, 139: 105964. |
[137] | Kang Y M, Wang W, Pu Y L, Li J M, Chai D, Lei Z Q. An effective Pd-NiOx-P composite catalyst for glycerol electrooxidation: Co-existed phosphorus and nickel oxide to enhance performance of Pd[J]. Chem. Eng. J., 2017, 308: 419-427. |
[138] | Bambagioni V, Bianchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M. Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol)[J]. J. Power Sources, 2009, 190(2): 241-251. |
[139] | Wang H B, Thia L, Li N, Ge X M, Liu Z L, Wang X. Pd nanoparticles on carbon nitride-graphene for the selective electro-oxidation of glycerol in alkaline solution[J]. ACS Catal., 2015, 5(6): 3174-3180. |
[140] | Weber M, Collot P, El Gaddari H, Tingry S, Bechelany M, Holade Y. Enhanced catalytic glycerol oxidation activity enabled by activated-carbon-supported palladium catalysts prepared through atomic layer deposition[J]. ChemElectroChem, 2018, 5(5): 743-747. |
[141] | Almeida T S D, Guima K-E, Silveira R M, da Silva G C, Martines M A U, Martins C A. A Pd nanocatalyst supported on multifaceted mesoporous silica with enhanced activity and stability for glycerol electrooxidation[J]. RSC Adv., 2017, 7(20): 12006-12016. |
[142] | Arjona N, Rivas S, Álvarez-Contreras L, Guerra-Balcázar M, Ledesma-García J, Kjeang E, Arriaga L G. Glycerol electro-oxidation in alkaline media using Pt and Pd catalysts electrodeposited on three-dimensional porous carbon electrodes[J]. New J. Chem., 2017, 41(4): 1854-1863. |
[143] | Habibi E, Razmi H. Glycerol electrooxidation on Pd, Pt and Au nanoparticles supported on carbon ceramic electrode in alkaline media[J]. Int. J. Hydrogen Energy, 2012, 37(22): 16800-16809. |
[144] | Su L, Jia W Z, Schempf A, Lei Y. Palladium/titanium dioxide nanofibers for glycerol electrooxidation in alkaline medium[J]. Electrochem. Commun., 2009, 11(11): 2199-2202. |
[145] | Shang C S, Hong W, Guo Y X, Wang J, Wang E K. Water-based synjournal of palladium trigonal bipyramidal/tetrahedral nanocrystals with enhanced electrocatalytic oxidation activity[J]. Chem. Eur. J., 2017, 23(24): 5799-5803. |
[146] | Guima K E, Alencar L M, da Silva G C, Trindade M A G, Martins C A. 3D-printed electrolyzer for the conversion of glycerol into tartronate on Pd nanocubes[J]. ACS Sustain. Chem. Eng., 2018, 6(1): 1202-1207. |
[147] | Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Synjournal of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825): 732-735. |
[148] | Deng Y J, Tian N, Zhou Z Y, Huang R, Liu Z L, Xiao J, Sun S G. Alloy tetrahexahedral Pd-Pt catalysts: Enhancing significantly the catalytic activity by synergy effect of high-index facets and electronic structure[J]. Chem. Sci., 2012, 3(4): 1157-1161. |
[149] | Zhou Z Y, Tian N, Li J T, Broadwell I, Sun S G. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage[J]. Chem. Soc. Rev., 2011, 40(7): 4167-4185. |
[150] | Liu M M, Wang L L, Zhao K N, Shi S S, Shao Q S, Zhang L, Sun X L, Zhao Y F, Zhang J J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synjournal, characterization, reaction mechanisms and electrochemical energy applications[J]. Energy Environ. Sci., 2019, 12(10): 2890-2923. |
[151] | Choi C H, Kim M, Kwon H C, Cho S J, Yun S, Kim H T, Mayrhofer K J J, Kim H, Choi M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst[J]. Nat. Commun., 2016, 7(1): 10922. |
[152] | Zhao D, Zhuang Z W, Cao X, Zhang C, Peng Q, Chen C, Li Y D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation[J]. Chem. Soc. Rev., 2020, 49(7): 2215-2264. |
[153] | Zhang Z Y, Xin L, Qi J, Chadderdon D J, Li W Z. Supported Pt, Pd and Au nanoparticle anode catalysts for anion-exchange membrane fuel cells with glycerol and crude glycerol fuels[J]. Appl. Catal. B - Environ. 2013, 136: 29-39. |
[154] | Li Y, Wei X F, Chen L S, Shi J L, He M Y. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions[J]. Nat. Commun., 2019, 10(1): 5335. |
[155] | Houache M S E, Safari R, Nwabara U O, Rafaideen T, Botton G A, Kenis P J A, Baranton S, Coutanceau C, Baranova E A. Selective electrooxidation of glycerol to formic acid over carbon supported Ni1-x Mx(M = Bi, Pd, and Au) nanocatalysts and coelectrolysis of CO2[J]. ACS Appl. Energy Mater., 2020, 3(9): 8725-8738. |
[156] | Kosamia N M, Samavi M, Uprety B K, Rakshit S K. Valorization of biodiesel byproduct crude glycerol for the production of bioenergy and biochemicals[J]. Catalysts, 2020, 10(6): 609. |
/
〈 |
|
〉 |