欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

3.9 V电化学稳定窗口的乙酸盐电解液用于低成本高性能的水系钠离子电池

  • 兰道云 ,
  • 屈小峰 ,
  • 唐宇婷 ,
  • 刘丽英 ,
  • 刘军
展开
  • 广东工业大学,广东 广州 510006
* (86)18773137462, E-mail: junliu23@gdut.edu.cn

收稿日期: 2021-02-22

  修回日期: 2021-03-10

  网络出版日期: 2021-03-27

基金资助

国家自然科学基金面上项目(21673051);广东省科技厅国际合作项目(2019A050510043);广东省科技厅产学研重大专项(2017B010119003)

版权

《电化学》编辑部, 2022, 版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Acetate Solutions with 3.9 V Electrochemical Stability Window as an Electrolyte for Low-Cost and High-Performance Aqueous Sodium-Ion Batteries

  • Dao-Yun Lan ,
  • Xiao-Feng Qu ,
  • Yu-Ting Tang ,
  • Li-Ying Liu ,
  • Jun Liu
Expand
  • Guangdong University of Technology, Guangzhou 510006, Guangdong, China

Received date: 2021-02-22

  Revised date: 2021-03-10

  Online published: 2021-03-27

Copyright

, 2022, Copyright reserved © 2022

摘要

水系钠离子电池因其低成本和高安全性有望在大规模储能领域得到广泛应用,但稀水溶液的电化学稳定窗口窄(1.23 V),限制了钠离子电池的能量密度。“water-in-salt”盐包水策略可有效扩宽水的电化学稳定窗口。本文中通过使用高浓度的乙酸铵(CH3COONH4,25 mol·L-1)与乙酸钠(CH3COONa,5 mol·L-1),将水的电化学稳定窗口扩宽至3.9 V。该高浓度水溶液与MnO2/CNTs正极和NaTi2(PO4)3/C负极组装的全电池平均工作电压为1.3 V,容量可以达到74.1 mAh·g-1

本文引用格式

兰道云 , 屈小峰 , 唐宇婷 , 刘丽英 , 刘军 . 3.9 V电化学稳定窗口的乙酸盐电解液用于低成本高性能的水系钠离子电池[J]. 电化学, 2022 , 28(1) : 2102231 . DOI: 10.13208/j.electrochem.210223

Abstract

Low-cost and high-safety aqueous sodium-ion batteries have received widespread attention in the field of large-scale energy storage, but the narrow electrochemical stability window (1.23 V) of water limits the energy density of aqueous sodium-ion batteries. The “water-in-salt” strategy which uses the interaction between cations and water molecules in the solution can inhibit water decomposition and broaden the electrochemical stability window of water. In this work, two types of low-cost salts, namely, ammonium acetate (NH4CH3COOH) and sodium acetate (NaCH3COOH), were used to configure a mixed aqueous electrolyte for aqueous sodium-ion batteries. The solution consisted of 25 mol·L -1 NH4CH3COOH and 5 mol·L-1 NaCH3COOH, used as an aqueous electrolyte, exhibited a wide electrochemical stability window of 3.9 V and high ionic conductivity of 28.2 mS·cm-1. The composite of layered manganese dioxide and multi-wall carbon nanotubes (MnO2/CNTs) was used as a positive electrode material, while the carbon-coated NaTi2(PO4)3 with NASICON structure was used as a negative electrode material. Both of these electrode materials had excellent electrochemical performances in the aqueous electrolyte. A full cell achieved an average working voltage of about 1.3 V and a discharge capacity of 74.1 mAh·g-1 at a current density of 0.1 A·g-1. This aqueous sodium-ion battery displayed excellent cycling stability with negligible capacity losses (0.062% per cycle) for 500 cycles. The safe and environmentally friendly aqueous acetate electrolyte, with a wide electrochemical stability window, showed the potential to be matched with positive materials having higher potential and negative materials having lower potential for further improving the voltage of aqueous sodium-ion batteries and promoting the development of aqueous batteries for large-scale energy storage technology.

参考文献

[1] Liu S(刘双), Shao L Y(邵涟漪), Zhang X J(张雪静), Tao Z L(陶占良), Chen J(陈军). Advances in electrode materials for aqueous rechargeable sodium-ion batteries[J]. Acta Phys. - Chim. Sin.(物理化学学报), 2018, 34(6): 581-97.
[2] Ge X F, Liu S H, Qiao M, Du Y C, Li Y F, Bao J C, Zhou X S. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers[J]. Angew. Chem. Int. Ed., 2019, 58(41): 14578-14583.
[3] Kudakwashe C, Grietus M, Dmitri L D, Notten P H L. Sodium-ion battery materials and electrochemical properties reviewed[J]. Adv. Energy Mater., 2018, 8(16): 1800079.
[4] Yi Z Y, Xu J Y, Xu Z H, Zhang M, He Y N, Bao J C, Zhou X S. Ultrafine SnSSe/multilayer graphene nanosheet nanocomposite as a high-performance anode material for potassium-ion half/full batteries[J]. J. Energy Chem., 2021, 60: 241-248.
[5] Cao Y(曹翊), Wang Y G(王永刚), Wang Q(王青), Zhang Z Y(张兆勇), Che Y(车勇), Xia Y Y(夏永姚), Dai X(戴翔). Development of aqueous sodium ion battery[J]. Energy Storage Sci. Technol.(储能科学与技术), 2016, 5(3): 317-323.
[6] Zhang Z Z, Du Y C, Wang Q C, Xu J Y, Zhou Y N, Bao J C, Shen J, Zhou X S. A yolk-shell-structured FePO4 cathode for high-rate and long-cycling sodium-ion batteries[J]. Angew. Chem. Int. Ed., 2020, 59(40): 17504-17510.
[7] Grey C P, Tarascon J M. Sustainability and in situ monitoring in battery development[J]. Nat. Mater., 2016, 16(1): 45-56.
[8] Wang Y G, Yi J, Xia Y Y. Recent progress in aqueous lithium-ion batteries[J]. Adv. Energy Mater., 2012, 2(7): 830-840.
[9] Bin D, Wang F, Tamirat A G, Suo L M, Wang Y G, Wang C S, Xia Y Y. Progress in aqueous rechargeable sodium-ion batteries[J]. Adv. Energy Mater., 2018, 8(17): 1703008.
[10] Peljo P, Girault H H. Electrochemical potential window of battery electrolytes: the HOMO-LUMO misconception[J]. Energy Environ. Sci., 2018, 11(9): 2306-2309.
[11] Ovshinsky S R, Fetcenko M A, Ross J. A nickel metal hydride battery for electric vehicles[J]. Science, 1993, 260(5105): 176-181.
[12] Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S, Xu K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943
[13] Suo L M, Borodin O, Wang Y S, Rong X H, Sun W, Fan X L, Xu S Y, Schroeder M A, Cresce A V, Wang F, Yang C Y, Hu Y S, Xu K, Wang C S. “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting[J]. Adv. Energy Mater., 2017, 7(21): 1701189.
[14] Leonard D P, Wei Z X, Chen G, Du F, Ji X. Water-in-salt electrolyte for potassium-ion batteries[J]. ACS Energy Lett., 2018, 3(2): 373-374.
[15] Mende-M T, Li Z J, Salanne M. Computational screening of the physical properties of water-in-salt electrolytes[J]. Batteries Supercaps, 2021, 4(4): 646-652.
[16] Lukatskaya M R, Feldblyum J I, Mackanic D G, Lissel F, Michels D L, Cui Y, Bao Z A. Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries[J]. Energy Environ. Sci., 2018, 11(10): 2876-2883.
[17] Han J, Zhang H, Varzi A, Passerini S. Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries[J]. ChemSusChem, 2018, 11(21): 3704-3707.
[18] Liu Z X, Pang G, Dong S Y, Zhang Y D, Mi C H, Zhang X G. An aqueous rechargeable sodium-magnesium mixed ion battery based on NaTi2(PO4)3-MnO2 system[J]. Electrochim. Acta, 2019, 311: 1-7.
[19] Cai R(蔡然), Yang H W(杨宏伟), He J S(和劲松), Zhu W P(祝万鹏). Research progress on hydrogen bond structure in liquide water via raman spectroscopy[J]. Environ. Protec. Chem. Ind.(化工环保), 2010, 30(6): 492-495.
[20] Ogata A, Komaba S, Baddour-Hadjean R, Pereira-Ramos J P, Kumagai N. Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery[J]. Electrochim. Acta, 2008, 53(7): 3084-3093.
[21] Zhang Y, Hu Y, Li S, et al. Manganese dioxide-coated carbon nanotubes as an improved cathodic catalyst for oxygen reduction in a microbial fuel cell[J]. J. Power So-urces, 2011, 196(22): 9284-9289.
[22] Xie J, Liang Z, Lu Y C. Molecular crowding electrolytes for high-voltage aqueous batteries[J]. Nat. Mater., 2020, 19(9): 1006-1011.
[23] Tongraar A, Liedl K R, Rode B M. Born-oppenheimer ab Initio QM/MM dynamics simulations of Na+ and K+ in water: From structure making to structure breaking effects[J]. J. Phys. Chem. A, 1998, 102(50): 10340-10347.
[24] Burikov S A, Dolenko T A, Velikotnyi P A, Sugonyaev A V, Fadeev V V. The effect of hydration of ions of inorganic salts on the shape of the Raman stretching band of water[J]. Opt. Spectrosc., 2005, 98(2): 235-239.
[25] Reber D, Figi R, Kühnel R S, Battaglia C. Stability of aqueous electrolytes based on LiFSI and NaFSI[J]. Electrochim. Acta, 2019, 321: 134644.
[26] Zhang W Y, Jin H X, Du Y Q, Zhang Y J, Wang Z H, Zhang J X. Hierarchical lamellar-structured MnO2@grap-hene for high performance Li, Na and K ion batteries[J]. ChemistrySelect, 2020, 5(40): 12481-61248.
[27] Niu L Y, Yan L J, Lu Z W, Gong Y Y, Chen T Q, Li C, Liu X J, Xu S Q. Tuning electronic structure of δ-MnO2 by the alkali-ion (K, Na, Li) associated manganese vacancies for high-rate supercapacitors[J]. J. Energy Chem., 2021, 56: 245-258.
文章导航

/