欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

铝合金表面改性对有机涂层附着力的影响及腐蚀防护性能研究

  • 况先银 ,
  • 金少强 ,
  • 曹艳辉 ,
  • 张艳梅 ,
  • 董士刚 ,
  • 朱龙晖 ,
  • 林理文 ,
  • 林昌健
展开
  • 1.厦门大学化学化工学院化学系,固体表面物理化学国家重点实验室,福建 厦门 361005
    2.厦门大学能源学院,福建 厦门 361005
    3.深圳飞扬骏研新材料股份有限公司,广东 深圳 518101
    4.厦门昕钢防腐工程科技有限公司,福建 厦门 361021
* Tel: (86-592)2189354, E-mail: cjlin@xmu.edu.cn

收稿日期: 2021-02-01

  修回日期: 2021-03-04

  网络出版日期: 2021-03-27

基金资助

国家自然科学基金项目(21621091);国际科技合作专项(2014DFG52350)

Effect of Aluminum Alloy Surface Modification on Adhesion of the Modified Polyurethane Coating and Its Corrosion Protective Performance

  • Xian-Yin Kuang ,
  • Shao-Qiang Jin ,
  • Yan-Hui Cao ,
  • Yan-Mei Zhang ,
  • Shi-Gang Dong ,
  • Long-Hui Zhu ,
  • Li-Wen Lin ,
  • Chang-Jian Lin
Expand
  • 1. State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen 361005, Fujian, China
    2. College of Energy, Xiamen University, Xiamen 361005, Fujian, China
    3. Shenzhen Feiyang Protech Gorp. Ltd, Shenzhen 518101, China
    4. Xiamen Xingang Anticorrosion Technology Co. Ltd, Xiamen 361021, Fujian, China

Received date: 2021-02-01

  Revised date: 2021-03-04

  Online published: 2021-03-27

摘要

利用电化学阻抗(EIS)、扫描微参比技术(SRET)、接触角、粗糙度、附着力、盐雾等测试方法,研究了铝合金阳极氧化与贻贝黏附蛋白(MAP)/CeO2/硅烷γ-APS(MCA)表面复合修饰的腐蚀防护性能以及对改性聚氨酯涂层附着力和耐蚀性的影响。结果表明,MCA复合膜可抑制铝合金的腐蚀,并具有一定的自修复功能;阳极氧化和MCA表面复合修饰可为铝合金提供有效的早期腐蚀防护作用,且能提高铝合金表面粗糙度和润湿性,显著提升改性聚氨酯涂层在铝合金表面的附着力和耐蚀性,因而结合改性聚氨酯涂层和表面复合修饰可实现对铝合金长期有效的腐蚀防护。

本文引用格式

况先银 , 金少强 , 曹艳辉 , 张艳梅 , 董士刚 , 朱龙晖 , 林理文 , 林昌健 . 铝合金表面改性对有机涂层附着力的影响及腐蚀防护性能研究[J]. 电化学, 2021 , 27(6) : 624 -636 . DOI: 10.13208/j.electrochem.210127

Abstract

The ordinary organic coatings on aluminum alloy usually encounter a problem of low adhesion to the substrate, which results in destruction and failure of the long-term protective performance of the anticorrosion systems. The surface modification of aluminum alloy is able to enhance the adhesion of organic coating on aluminum alloys, and to improve their protective performance. In this work, a combined surface modification of anodic oxidation and mussel adhesion protein/CeO2/3-aminopropyltriethoxysilane composite film (MCA) was developed on the aluminum alloy. The adhesion of modified polyurethane coated on the treated aluminum alloy and its corrosion protective performance were evaluated comprehensively by using contact angle, adhesion strength, electrochemical impedance spectroscopy (EIS), and scanning reference electrode technique (SRET). The measurements of EIS and SRET demonstrated that the MCA composite film on anodic oxidized Al possessed self-healing function and provided effective protection against early corrosion of aluminum alloy. The pull-off test showed that both anodic oxidation treatment and MCA composite film modification were able to increase the adhesion of modified polyurethane coating on aluminum alloy, and their combined action were supposed to remarkably enhance the adhesion strength up to 17.1 MPa. The reason for the improvement of adhesion was that the anodic oxidation treatment and MCA composite film modification could improve the surface roughness of aluminum alloy, and enhance the surface wettability and surface polarity, which is beneficent to enhance the bonding of the modified polyurethane coating to aluminum alloy surface. The EIS results showed that no any corrosion occurred for the modified polyurethane coating on the treated aluminum alloy during 65 d immersion in 3.5wt.% NaCl solution. The impedance value in low frequency range of the modified polyurethane coating always maintained at a high order of magnitude on the aluminum alloy treated by anodic oxidation and MCA composite film modification, showing an excellent protective performance of the coating system. The evaluation of Neutral Salt Spray (NSS) indicated that the modified polyurethane coating on the treated aluminum alloy owned superior corrosion protection performance, and the adhesion strength remained 13.1 MPa and no any corrosion was found at the scratch locations even after 1200 h of salt spray testing. It was concluded that combination of anodic oxidation and MCA composite film were capable of significantly improving the adhesion of modified polyurethane coating on aluminum alloy and providing long-term effective corrosion protection for aluminum alloy.

参考文献

[1] Williams J C, Starke E A. Progress in structural materials for aerospace systems[J]. Acta. Mater., 2003, 51(19): 5775-5799.
[2] Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys[J]. Mater. Design, 2014, 56: 862-871.
[3] Zhang B(张波), Fang Z G(方志刚), Li X Y(李向阳), Dong C C(董彩常). Status and prospect of corrosion protection technology about aluminium alloy ship[J]. Mat. China(中国材料进展), 2014, 33(7): 414-417.
[4] Zhou D(周冬), Li G M(李国明), Chi J H(迟均瀚), Chen S(陈珊). Research status of pulse cathodic protection and its application prospects in aluminum alloy protection[J]. Equip. Environ. Eng.(装备环境工程), 2020, 17(6): 81-85.
[5] Chen Y L(陈跃良), Wu S J(吴省均), Zhang Y(张勇), Bian G X(卞贵学), Zhang Z Z(张柱柱), Zhang Y G(张杨广). Corrosion behavior and DFR degradation law of 2024-T3 aluminium alloy in different surface state[J]. Equip. Environ. Eng.(装备环境工程), 2020, 17(6): 44-50.
[6] Denissen P J, Shkirskiy V, Volovitch P, Garcia, S. J. Corrosion inhibition at scribed locations in coated AA2024-T3 by cerium- and DMTD-loaded natural silica microparticles under continuous immersion and wet/dry cyclic exposure[J]. ACS Appl. Mater. Interfaces, 2020, 12(20): 23417-23431.
[7] Mohammadi I, Shahrabi T, Mahdavian M, Izadi M. Sodium diethyldithiocarbamate as a novel corrosion inhibitor to mitigate corrosion of 2024-T3 aluminum alloy in 3.5wt% NaCl solution[J]. J. Mol. Liq., 2020, 307(1): 112965.
[8] Niknahad M, Moradian S, Mirabedini S M. The adhesion properties and corrosion performance of differently pretreated epoxy coatings on an aluminium alloy[J]. Corros. Sci., 2010, 52(6): 1948-1957.
[9] Chen M A, Xie X, Zhang X M. Interactions of BTESPT silane and maleic anhydride grafted polypropylene with epoxy and application to improve adhesive durability between epoxy and aluminium sheet[J]. Prog. Org. Coat., 2009, 66(1): 40-51.
[10] Dalmoro V, Aleman C, Ferreira C A, Dos Santos J H Z, Azambuja D S, Armelin E. The influence of organophosphonic acid and conducting polymer on the adhesion and protection of epoxy coating on aluminium alloy[J]. Prog. Org. Coat., 2015, 88: 181-190.
[11] Tang M, Li W, Liu H, Zhu L Q. Influence of K2TiF6 in electrolyte on characteristics of the microarc oxidation coating on aluminum alloy[J]. Curr. Appl. Phys., 2012, 12(5): 1259-1265.
[12] Akbari E, Di Franco F, Ceraolo P, Raeissi K, Santamaria M, Hakimizad A. Electrochemically-induced TiO2 incorporation for enhancing corrosion and tribocorrosion resistance of PEO coating on 7075 Al alloy[J]. Corros. Sci., 2018, 143: 314-328.
[13] Dickie R A. Paint adhesion, corrosion protection, and interfacial chemistry[J]. Prog. Org. Coat., 1994, 25(1): 3-22.
[14] Zhu W, Li W F, Mu S L, Yang Y Y, Zuo X. The adhesion performance of epoxy coating on AA6063 treated in Ti/Zr/V based solution[J]. Appl. Surf. Sci., 2016, 384: 333-340.
[15] Zhu W, Li W F, Wang K, Mu S L, Fu N Q, Liao Z M, Tian J. Effect of TZVCC drying temperature on the adhesion performance of the epoxy coating on AA6063[J]. J. Adhesion, 2020, 96(6): 565-579.
[16] Zhu W, Li W F, Mu S L, Fu N Q, Liao Z M. Comparative study on Ti/Zr/V and chromate conversion treated aluminum alloys: Anti-corrosion performance and epoxy coating adhesion properties[J]. Appl. Surf. Sci., 2017, 405: 157-168.
[17] Liu Q, Cao X M, Du A, Ma R N, Zhang X R, Shi T T, Fan Y Z, Zhao X. Investigation on adhesion strength and corrosion resistance of Ti-Zr aminotrimethylene phosphonic acid composite conversion coating on 7A52 aluminum alloy[J]. Appl. Surf. Sci., 2018, 458: 350-359.
[18] Song J, Van Ooij W J. Bonding and corrosion protection mechanisms of gamma-APS and BTSE silane films on aluminum substrates[J]. J. Adhes. Sci. Technol., 2003, 17(16): 2191-2221.
[19] Bajat J B, Milosev I, Jovanovic Z, Jancic-Heinemann R M, Dimitrijevic M, Miskovic-Stankovic V B. Corrosion protection of aluminium pretreated by vinyltriethoxysilane in sodium chloride solution[J]. Corros. Sci., 2010, 52(3): 1060-1069.
[20] Bajat J B, Miskovic-Stankovic V B, Kacarevic-Popovic Z. Corrosion stability of epoxy coatings on aluminum pretreated by vinyltriethoxysilane[J]. Corros. Sci., 2008, 50(7): 2078-2084.
[21] Mohseni M, Mirabedini M, Hashemi M, Thompson G E. Adhesion performance of an epoxy clear coat on aluminum alloy in the presence of vinyl and amino-silane primers[J]. Prog. Org. Coat., 2006, 57(4): 307-313.
[22] Tran N T, Flanagan D P, Orlicki J A, Lenhart J L, Proctor K L, Knorr D B. Polydopamine and polydopamine-silane hybrid surface treatments in structural adhesive applications[J]. Langmuir, 2018, 34(4): 1274-1286.
[23] Zand B N, Mahdavian M. Corrosion and adhesion study of polyurethane coating on silane pretreated aluminum[J]. Surf. Coat. Tech., 2009, 203(12): 1677-1681.
[24] Yuan X, Yue Z F, Chen X, Wen S F, Li L, Feng T. The protective and adhesion properties of silicone-epoxy hybrid coatings on 2024 Al-alloy with a silane film as pretreatment[J]. Corros. Sci., 2016, 104: 84-97.
[25] Peng N, Wen Y Q, He Y D. Improved distribution of etched tunnels on aluminum foil with silane treatment[J]. Prog. Org. Coat., 2019, 127: 151-156.
[26] Pan L, Zhang A A, Zheng Z M, Duan L X, Zhang L, Shi Y, Tao J. Enhancing interfacial strength between AA5083 and cryogenic adhesive via anodic oxidation and silaniza-tion[J]. Int. J. Adhes. Adhes, 2018, 84: 317-324.
[27] Abel M L, Watts J F, Digby R P. The adsorption of alkoxysilanes on oxidised aluminium substrates[J]. Int. J. Adhes. Adhes., 1998, 18(3): 179-192.
[28] Zhang F, Pan J, Claesson P M. Electrochemical and AFM studies of mussel adhesive protein (Mefp-1) as corrosion inhibitor for carbon steel[J]. Electrochim. Acta, 2011, 56(3): 1636-1645.
[29] Sababi M, Zhang F, Krivosheeva O, Forslund M, Pan J S, Claesson P M, Dedinaite A. Thin composite films of mussel adhesive proteins and ceria nanoparticles on carbon steel for corrosion protection[J]. J. Electrochem. Soc., 2012, 159(8): C364-C371.
[30] Jiang P L, Hou R Q, Chen C D, Sun L, Dong S G, Pan J S, Lin C J. Controllable degradation of medical magnesium by electrodeposited composite films of mussel adhesive protein (Mefp-1) and chitosan[J]. J. Colloid. Interf. Sci., 2016, 478: 246-255.
[31] Gao J H(高镜涵), Li F H(李菲晖), Gong Y L(巩运兰), Ren S(任时). Recent research progress of surface treatments and anodic oxidation of aluminum alloys[J]. Plating and Finishing(电镀与精饰), 2018, 40(8): 18-23.
[32] Jothi V, Adesina A Y, Kumar A M, Al-Aqeeli N, Ram J S N. Influence of an anodized layer on the adhesion and surface protective performance of organic coatings on AA2024 aerospace Al alloy[J]. Prog. Org. Coat., 2020, 138: 105396.
[33] Zhang F, Pan J S, Claesson P M, Brinck T. Electrochemical, atomic force microscopy and infrared reflection absorption spectroscopy studies of pre-formed mussel adhesive protein films on carbon steel for corrosion protection[J]. Thin Solid Films, 2012. 520(24): 7136-7143.
[34] Khun N W, Frankel G S, Zimmerman J. Investigation of surface morphology, wear resistance, and adhesiveness of AA6061-T6 treated in a hexafluorozirconic acid-based solution[J]. Corrosion, 2013, 69(3): 259-267.
[35] Hu J M, Liu L, Zhang J Q, Cao C N. Effects of electrodeposition potential on the corrosion properties of bis-1,2- triethoxysilyl ethane films on aluminum alloy[J]. Electro-chim. Acta, 2006, 51(19): 3944-3949.
[36] Hu J M, Liu L, Zhang J Q, Cao C N. Electrodeposition of silane films on aluminum alloys for corrosion protection[J]. Prog. Org. Coat., 2007, 58(4): 265-271.
[37] Hu J M, Liu L, Zhang J Q, Cao C N. Preparation of DTMS films on LY12 aluminum alloys via electrochemical deposition and their anti-corrosive performance[J]. Chem. J. Chinese. U., 2006, 27(6): 1121-1125.
[38] Zhang J Q(张鉴清), Cao C N(曹楚南). Study and evaluation on organic coatings by electrochemical impedance spectroscopy[J]. Corros. Prot.(腐蚀与防护), 1998, 3: 99-104.
文章导航

/