欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

双极纳米电极阵列实现单个铂纳米颗粒上氢气析出反应的电致化学发光成像

  • 秦祥 ,
  • 李仲秋 ,
  • 潘建斌 ,
  • 李剑 ,
  • 王康 ,
  • 夏兴华
展开
  • 生命分析化学国家重点实验室,南京大学化学化工学院,江苏 南京

收稿日期: 2021-02-14

  修回日期: 2021-03-24

  网络出版日期: 2021-03-27

Electrochemiluminescence Imaging Hydrogen Evolution Reaction on Single Platinum Nanoparticles Using a Bipolar Nanoelectrode Array

  • Xiang Qin ,
  • Zhong-Qiu Li ,
  • Jian-Bin Pan ,
  • Jian Li ,
  • Kang Wang ,
  • Xing-Hua Xia
Expand
  • State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering,Nanjing University, Nanjing 210023, Jiangsu China
* Tel: (86-25)89687436, E-mail: xhxia@nju.edu.cn

Received date: 2021-02-14

  Revised date: 2021-03-24

  Online published: 2021-03-27

摘要

本文制备了嵌于多孔阳极氧化铝(AAO)膜中直径为200 nm,间距为450 nm的高密度(5.7 × 108 cm-2)的金纳米电极阵列,纳米电极分布规则,尺寸高度均一。我们将该金纳米电极阵列作为双极电极阵列,可将电极一侧的电化学法拉第信号在另一侧电极上转化成电致化学发光(ECL)信号,从而实现对单个铂纳米颗粒上氢气析出反应(HER)进行亚微米空间分辨率的电化学成像。本文介绍的方法为高空间分辨率成像电催化材料、能源材料以及细胞过程的局部电化学活性提供了一个良好的平台。

本文引用格式

秦祥 , 李仲秋 , 潘建斌 , 李剑 , 王康 , 夏兴华 . 双极纳米电极阵列实现单个铂纳米颗粒上氢气析出反应的电致化学发光成像[J]. 电化学, 2021 , 27(2) : 157 -167 . DOI: 10.13208/j.electrochem.201251

Abstract

A high-density (5.7 × 108 cm-2) nanoelectrode array with the electrode diameter of 200 nm and the interelectrode distance of 450 nm were fabricated. The nanoelectrode array consisted of gold nanowires embedded in a porous anodic aluminum oxide (AAO) matrix, having regular nanoelectrode distribution and highly uniform nanoelectrode size. The gold nanoelectrode array was used as a closed bipolar nanoelectrode array combined with electrochemiluminescence (ECL) method to map the electrocatalytic activity of platinum nanoparticles toward hydrogen evolution reaction (HER) by modifying the catalysts on single nanoelectrodes. Results show that HER on single bipolar nanoelectrodes could be imaged with the sub-micrometer spatial resolution. The present approach offers a platform to image local electrochemical activity of electrocatalytic materials, energy materials and cellular processes with high spatial resolution.

参考文献

[1] Tao B L, Yule L C, Daviddi E, Bentley C L, Unwin P R. Correlative electrochemical microscopy of Li-ion (De)intercalation at a series of individual LiMn2O4 particles[J]. Angew. Chem. Int. Ed., 2019,58(14):4606-4611.
[2] Sharel P E, Kang M, Wilson P, Meng L C, Perry D, Basile A, Unwin P R. High resolution visualization of the redox activity of Li2O2 in non-aqueous media: conformal layer vs. toroid structure[J]. Chem. Commun., 2018,54(24):3053-3056.
[3] Takahashi Y, Kumatani A, Munakata H, Inomata H, Ito K, Ino K, Shiku H, Unwin P R, Korchev Y E, Kanamura K, Matsue T. Nanoscale visualization of redox activity at lithium-ion battery cathodes[J]. Nat. Commun., 2014,5:5450.
[4] Jiang D, Jiang Y Y, Li Z M, Liu T, Wo X, Fang Y M, Tao N J, Wang W, Chen H Y. Optical imaging of phase transition and Li-ion diffusion kinetics of single LiCoO2 nanoparticles during electrochemical cycling[J]. J. Am. Chem. Soc., 2016,139(1):186-192.
[5] Bucher E S, Wightman R M. Electrochemical analysis of neurotransmitters[J]. Annu. Rev. Anal. Chem., 2015,8:239-261.
[6] Zhang J J, Zhou J Y, Pan R R, Jiang D C, Burgess J D, Chen H Y. New frontiers and challenges for single-cell electrochemical analysis[J]. ACS. Sens., 2018,3(2):242-250.
[7] Lin T E, Rapino S, Girault H H, Lesch A. Electrochemical imaging of cells and tissues[J]. Chem. Sci., 2018,9(20):4546-4554.
[8] Bentley C L, Kang M, Unwin P R. Nanoscale surface structure-activity in electrochemistry and electrocatalysis[J]. J. Am. Chem. Soc., 2019,141(6):2179-2193.
[9] Bentley C L, Kang M, Unwin P R. Nanoscale structure dynamics within electrocatalytic materials[J]. J. Am. Chem. Soc., 2017,139(46):16813-16821.
[10] Kim J, Renault C, Nioradze N, Arroyo-Curras N, Leonard K C, Bard A J. Electrocatalytic activity of individual Pt nanoparticles studied by nanoscale scanning electrochemical microscopy[J]. J. Am. Chem. Soc., 2016,13(27):8560-8568.
[11] Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning electrochemical microscopy: A comprehensive review of experimental parameters from 1989 to 2015[J]. Chem. Rev., 2016,116(22):13234-13278.
[12] Kai T, Zoski C G, Bard A J. Scanning electrochemical microscopy at the nanometer level[J]. Chem. Commun., 2018,54(16):1934-1947.
[13] Kang M, Perry D, Bentley C L, West G, Page A, Unwin P R. Simultaneous topography and reaction flux mapping at and around electrocatalytic nanoparticles[J]. ACS Nano, 2017,11(9):9525-9535.
[14] Daviddi E, Gonos K L, Colburn A W, Bentley C L, Unwin P R. Scanning electrochemical cell microscopy (SECCM) chronopotentiometry: Development and applications in electroanalysis and electrocatalysis[J]. Anal. Chem., 2019,91(14):9229-9237.
[15] Audebert P, Miomandre F. Electrofluorochromism: from molecular systems to set-up and display[J]. Chem. Sci., 2013,4(2):575-584.
[16] Sambur J B, Chen T Y, Choudhary E, Chen G, Nissen E J, Thomas E M, Zou N, Chen P. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes[J]. Nature, 2016,530(7588):77-80.
[17] Bouffier L, Doneux T. Coupling electrochemistry with in situ fluorescence (confocal) microscopy[J]. Curr. Opin. Electrochem., 2017,6(1):31-37.
[18] Zhu M J, Pan J B, Wu Z Q, Gao X Y, Zhao W, Xia X H, Xu J J, Chen H Y. Electrogenerated chemiluminescence imaging of electrocatalysis at a single Au-Pt Janus nano-particle[J]. Angew. Chem. Int. Ed., 2018,57(15):4010-4014.
[19] Valenti G, Scarabino S, Goudeau B, Lesch A, Jovic M, Villani E, Sentic M, Rapino S, Arbault S, Paolucci F, Sojic N. Single cell electrochemiluminescence imaging: from the proof-of-concept to disposable device-based analysis[J]. J. Am. Chem. Soc., 2017,139(46):16830-16837.
[20] Voci S, Goudeau B, Valenti G, Lesch A, Jovic M, Rapino S, Paolucci F, Arbault S, Sojic N. Surface-confined electrochemiluminescence microscopy of cell membranes[J]. J. Am. Chem. Soc., 2018,140(44):14753-14760.
[21] Zhou J Y, Ma G Z, Chen Y, Fang D J, Jiang D C, Chen H Y. Electrochemiluminescence imaging for parallel single-cell analysis of active membrane cholesterol[J]. Anal. Chem., 2015,87(16):8138-8143.
[22] Guerrette J P, Percival S J, Zhang B. Fluorescence coupling for direct imaging of electrocatalytic heterogeneity[J]. J. Am. Chem. Soc., 2013,135(2):855-861.
[23] Anderson T J, Defnet P A, Zhang B. Electrochemiluminescence (ECL) - based electrochemical imaging using a massive array of bipolar ultramicroelectrodes[J]. Anal. Chem., 2020,92(9):6748-6755.
[24] Iwama T, Inoue K Y, Abe H, Matsue T. Chemical imaging using a closed bipolar electrode array[J]. Chem. Lett., 2018,47(7):843-845.
[25] Iwama T, Inoue K Y, Abe H, Matsue T, Shiku H. Bioimaging using bipolar electrochemical microscopy with improved spatial resolution[J]. Analyst, 2020,145(21):6895-6900.
[26] Qin X, Li Z Q, Zhou Y, Pan J B, Li J, Wang K, Xu J J, Xia X H. Fabrication of high-density and superuniform gold nanoelectrode arrays for electrochemical fluorescence imaging[J]. Anal. Chem., 2020,92(19):13493-13499.
[27] Hurst S J, Payne E K, Qin L, Mirkin C A. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods[J]. Angew. Chem. Int. Ed., 2006,45(17):2672-2692.
[28] Peinetti A S, Gilardoni R S, Mizrahi M, Requejo F G, Gonzalez G A, Battaglini F. Numerical simulation of the diffusion processes in nanoelectrode arrays using an axial neighbor symmetry approximation[J]. Anal. Chem., 2016,88(11):5752-5759.
[29] Zu Y, Bard A J. Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium Tris(2,2')bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity[J]. Anal. Chem., 2000,72(14):3223-3232.
[30] Pan S, Liu J, Hill C M. Observation of local redox events at individual Au nanoparticles using electrogenerated chemiluminescence microscopy[J]. J. Phys. Chem. C, 2015,119(48):27095-27103.
[31] Wilson A J, Marchuk K, Willets K A. Imaging electrogenerated chemiluminescence at single gold nanowire electrodes[J]. Nano. Lett., 2015,15(9):6110-6115.
[32] Valenti G, Fiorani A, Li H, Sojic N, Paolucci F. Essential role of electrode materials in electrochemiluminescence applications[J]. ChemElectroChem, 2016,3(12):1990-1997.
[33] Li F, Zu Y. Effect of nonionic fluorosurfactant on the electrogenerated chemiluminescence of the tris(2,2'-bipy-ridine)ruthenium(II)/Tri-n-propylamine system: lower oxidation potential and higher emission intensity[J]. Anal. Chem., 2004,76(6):1768-1772.
[34] Yin H J, Zhao S L, Zhao K, Muqsit A, Tang H J, Chang L, Zhao H J, Gao Y, Tang Z Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity[J]. Nat. Commun., 2015,6:6430.
[35] Cheng N, Stambula S, Wang D, Banis M N, Liu J, Riese A, Xiao B, Li R, Sham T K, Liu L M, Botton G A, Sun X L. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nat. Commun., 2016,7:13638.
[36] Liu S F, Zhang X, Yu Y M, Zou G Z. A monochromatic electrochemiluminescence sensing strategy for dopamine with dual-stabilizers-capped CdSe quantum dots as emitters[J]. Anal. Chem., 2014,86(5):2784-2788.
[37] Wei H, Wang E K. Solid-state electrochemiluminescence of tris(2,2′-bipyridyl) ruthenium[J]. TRAC-Trend Anal. Chem., 2008,27(5):447-459.
文章导航

/