CsPbIBr2钙钛矿太阳能电池中通过氧气诱导Spiro-OMeTAD快速氧化
收稿日期: 2021-02-04
修回日期: 2021-03-17
网络出版日期: 2021-03-20
Oxygen-Exposure Induced Rapid Oxidation of Spiro-OMeTAD in CsPbIBr2 Perovskite Solar Cells
Received date: 2021-02-04
Revised date: 2021-03-17
Online published: 2021-03-20
Spiro-OMeTAD是钙钛矿型太阳能电池中应用最广泛的空穴传输材料,它本身的空穴传输率很低,需要氧化之后才能满足高效率太阳能电池器件的要求。然而,Spiro-OMeTAD在空气中的氧化时间较长,同时空气中的水分会造成器件效率的下降以及器件质量不稳定等不良后果。基于此,我们通过一步法制备CsPbIBr2无机钙钛矿太阳能电池,并将旋涂了Spiro-OMeTAD层的器件放在纯氧气中氧化,避免因水分导致的钙钛矿层分解。实验结果表明,氧气氧化后的器件最高效率为7.19%,高于空气中氧化的器件达到的最高效率6.29%,并且氧气氧化可以将Spiro-OMeTAD的氧化时间从18小时缩短到5小时。我们采用一系列电化学表征方法探讨了不同氧化条件下电池器件的性能差异.结果显示,纯氧气氧化Spiro-OMeTAD可以有效减低载流子复合,提高电荷传输。此外,我们采集了多个样本统计分析,发现采用氧气氧化的器件平均效率更高,器件质量更稳定,具有更好的可重复性。这种快速稳定的氧化方法为钙钛矿型太阳能电池的商业化开发提供了有效的思路。
关键词: 钙钛矿; Spiro-OMeTAD; 快速氧化; CsPbIBr2; 太阳能电池
王伟国 , 白天 , 薛高飞 , 叶美丹 . CsPbIBr2钙钛矿太阳能电池中通过氧气诱导Spiro-OMeTAD快速氧化[J]. 电化学, 2021 , 27(2) : 216 -226 . DOI: 10.13208/j.electrochem.201249
2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (Spiro-OMeTAD) is the most widely used hole transport material in perovskite solar cells (PSCs). However, its oxidation in the air takes a long time and results in the attack of perovskite by water. In this regard, we performed the oxidation process of Spiro-OMeTAD in oxygen, where perovskite can be protected from water, guaranteeing the integrity of perovskite. It was demonstrated that the champion Spiro-OMeTAD based CsPbIBr2 PSCs after oxygen oxidation achieved a 7.19% power conversion efficiency (PCE), showing a higher PCE than 6.29% of the champion device oxidized in air. A series of electrochemical characterization methods were applied to investigate the performances of the different cell devices under different oxidation conditions. It was revealed that the oxygen oxidation enabled to enhance the hole conductivity of Spiro-OMeTAD, reduce the charge recombination and improve the charge transfer efficiency in PSCs. Moreover, the device with oxygen oxidation had a higher average efficiency and greater stability. This method makes the devices have better repeatability, which provides a reliable idea for the commercial development of PSCs.
Key words: perovskite; Spiro-OMeTAD; rapid oxidation; CsPbIBr2
[1] | Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131(17):6050-6051. |
[2] | Sahli F, Werner J, Kamino BA, Br?uninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B, Ballif C. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J]. Nat. Mater., 2018,17(9):820-826. |
[3] | Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchun-angatchaval T, Wheeler S, Durrant J R, Haque S A. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells[J]. Energy. Environ. Sci., 2016,9(5):1655-1660. |
[4] | Pearson A J, Eperon G E, Hopkinson P E, Habisreutinger S N, Wang J T W, Snaith H J, Greenham N C. Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3-xClx perovskite solar cells: kinetics and mechanisms[J]. Adv. Energy Mater., 2016,6(13):1600014. |
[5] | Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J. Organometal halide perovskite solar cells: degradation and stability[J]. Energy Environ. Sci., 2016,9(2):323-356. |
[6] | Huang J, Tan S, Lund P D, Zhou H. Impact of H2O on organic-inorganic hybrid perovskite solar cells[J]. Energy Environ. Sci., 2017,10(11):2284-2311. |
[7] | Dong Q, Liu F, Wong M K, Tam H W, Djuri?ic A B, Ng A, Surya C, Chan W K, Ng AMC. Encapsulation of perovskite solar cells for high humidity conditions[J]. ChemSusChem, 2016,9(18):2597-2603. |
[8] | Weerasinghe H C, Dkhissi Y, Scully A D, Caruso R A, Cheng Y B. Encapsulation for improving the lifetime of flexible perovskite solar cells[J]. Nano Energy, 2015,18:118-125. |
[9] | Matteocci F, Cinà L, Lamanna E, Cacovich S, Divitini G, Midgley P A, Ducati C, Di Carlo A. Encapsulation for long-term stability enhancement of perovskite solar cells[J]. Nano Energy, 2016,30:162-172. |
[10] | Ouedraogo N A N, Chen Y, Xiao Y Y, Meng Q, Han C B, Yan H, Zhang Y. Stability of all-inorganic perovskite solar cells[J]. Nano Energy, 2020,67:104249. |
[11] | Li B, Fu L, Li S, Li H, Pan L, Wang L, Chang B H, Yin L W. Pathways toward high-performance inorganic perovskite solar cells: challenges and strategies[J]. J. Mater. Chem. A, 2019,7(36):20494-20518. |
[12] | Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z R, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lü H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J. All-inorganic perovskite solar cells[J]. J. Am. Chem. Soc., 2016,138(49):15829-15832. |
[13] | Liang J, Zhao P Y, Wang C X, Wang Y R, Hu Y, Zhu G Y, Ma L B, Liu J, Jin Z. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and dtability[J]. J. Am. Chem. Soc., 2017,139(40):14009-14012. |
[14] | Wang Y, Dar M I, Ono L K, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies > 18%[J]. Science, 2019,365(6453):591-595. |
[15] | Chu W B, Saidi W A, Zhao J, Prezhdo O V. Soft lattice and defect covalency rationalize tolerance of β-CsPbI3 perovskite solar cells to native defects[J]. Angew. Chem. Int. Ed., 2020,59(16):6435-6441. |
[16] | You Y B, Tian W, Wang M, Coo F R, Sun H X, Li L. PEG modified CsPbIBr2 perovskite film for efficient and stable solar cells[J]. Adv. Mater. Interfaces, 2020,7(13):2000537. |
[17] | Chen W J, Chen H Y, Xu G Y, Xue R M, Wang S H, Li Y W, Li Y F. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells[J]. Joule, 2019,3(1):191-204. |
[18] | Gao B W, Meng J. Highly stable all-inorganic CsPbIBr2 perovskite solar cells with 11.30% efficiency using crystal interface passivation[J]. ACS Appl. Energy Mater. 2020,3(9):8249-8256. |
[19] | Liang J, Zhu G Y, Wang C X, Zhao P Y, Wang Y R, Hu Y, Ma L B, Tie Z X, Liu J, Jin Z. An all-inorganic perovskite solar capacitor for efficient and stable spontaneous photocharging[J]. Nano Energy, 2018,52:239-245. |
[20] | Ma L B, Zhang W J, Zhao P Y, Liang J, Hu Y, Zhu G Y, Chen R P, Tie Z X, Liu J, Jin Z. Highly efficient overall water splitting driven by all-inorganic perovskite solar cells and promoted by bifunctional bimetallic phosphide nanowire arrays[J]. J. Mater. Chem. A, 2018,6(41):20076-20082. |
[21] | Liang J, Liu J, Jin Z. All-inorganic halide perovskites for optoelectronics: progress and prospects[J]. Sol. RRL, 2017,1(10):1700086. |
[22] | Liang J, Wang C X, Zhao P Y, Lu Z P, Ma Y, Xu Z R, Wang Y R, Zhu H F, Hu Y, Zhu G Y, Ma L B, Chen T, Tie Z X, Liu J, Jin Z. Solution synjournal and phase control of inorganic perovskites for high-performance optoelectronic devices[J]. Nanoscale, 2017,9(33):11841-11845. |
[23] | Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nckel oxide hole-transporting layer[J]. Adv. Mater., 2015,27(4):695-701. |
[24] | Ameen S, Rub M A, Kosa S A, Alamry K A, Akhtar M S, Shin H S, Seo H K, Asiri A M, Nazeeruddin M K. Perovskite solar cells: influence of hole transporting materials on power conversion eefficiency[J]. ChemSusChem, 2016,9(1):10-27. |
[25] | Jeon N J, Lee H G, Kim Y C, Seo J, Noh J H, Lee J, Seok S I. o-Methoxy substituents in Spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells[J]. J. Am. Chem. Soc., 2014,136(22):7837-7840. |
[26] | Dualeh A, Moehl T, Nazeeruddin M K, Gr?tzel M. Temperature dependence of transport properties of Spiro-MeOTAD as a hole transport material in solid-state dye-sensitized solar cells[J]. ACS Nano, 2013,7(3):2292-2301. |
[27] | Sch?lin R, Karlsson M H, Eriksson S K, Siegbahn H, Johansson E M J, Rensmo H. Energy level shifts in spiro-OMeTAD molecular thin films when adding Li-TFSI[J]. J. Phys. Chem. C, 2012,116(50):26300-26305. |
[28] | Wang Y M, Qu H, Zhang C M, Chen Q. Rapid oxidation of the hole transport layer in perovskite solar cells by a low-temperature plasma[J]. Sci. Rep., 2019,9(1):459. |
[29] | Nouri E, Wang Y L, Chen Q, Xu J J, Dracopoulos V, Sygellou L, Xu Z X, Mohammadi M R, Lianos P. The beneficial effects of mixing spiro-OMeTAD with n-butyl-substituted copper phthalocyanine for perovskite solar cells[J]. Electrochim. Acta, 2016,222:1417-1423. |
[30] | Nguyen W H, Bailie C D, Unger E L, McGehee M D. Enhancing the hole-conductivity of Spiro-OMeTAD without oxygen or lithium salts by using Spiro(TFSI)2 in perovskite and dye-sensitized solar cells[J]. J. Am. Chem. Soc., 2014,136(31):10996-11001. |
[31] | Liu G L, Xi X, Chen R L, Chen L P, Chen G Q. Oxygen aging time: A dominant step for spiro-OMeTAD in perovskite solar cells[J]. J. Renew. Sustain. Ener., 2018,10(4):043702. |
[32] | Wang H X, Cao S L, Yang B, Li H Y, Wang M, Hu X F, Sun K, Zang Z G. NH4Cl - modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process[J]. Sol. RRL, 2019,4(1):1900363. |
[33] | Guo Y X, Yin X T, Liu J, Que W X. Highly efficient CsPbIBr2 perovskite solar cells with efficiency over 9.8% fabricated using a preheating-assisted spin-coating method[J]. J. Mater. Chem. A, 2019,7(32):19008-19016. |
[34] | Lu J J, Chen S C, Zheng Q D. Defect passivation of CsPbIBr2 perovskites for high-performance solar cells with large open-circuit voltage of 1.28 V[J]. ACS Appl. Energy Mater., 2018,1(11):5872-5878. |
[35] | Zhu W D, Zhang Z Y, Chai W M, Chen D Z, Xi H, Chang J J, Zhang J C, Zhang C F, Hao Y. Benign pinholes in CsPbIBr2 absorber film enable efficient carbon-based, all-inorganic perovskite solar cells[J]. ACS Appl. Energy Mater., 2019,2(7):5254-5262. |
[36] | Liu P Y, Yang X Q, Chen Y H, Xiang H M, Wang W, Ran R, Zhou W, Shao Z P. Promoting the efficiency and stability of CsPbIBr2-based all-inorganic perovskite solar cells through a functional Cu2+ doping strategy[J]. ACS Appl. Mater. Interfaces, 2020,12(21):23984-23994. |
[37] | Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam M S, Haque S A. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells[J]. Nat. Commun., 2017,8(1):15218. |
[38] | Zhou Y Y, Zhao Y X. Chemical stability and instability of inorganic halide perovskites[J]. Energy Environ. Sci., 2019,12(5):1495-1511. |
[39] | Liu S C, Li Z, Yang Y, Wang X, Chen Y X, Xue D J, Hu J S. Investigation of oxygen passivation for high-performance all-inorganic perovskite solar cells[J]. J. Am. Chem. Soc., 2019,141(45):18075-18082. |
[40] | Tian Y X, Peter M, Unger E, Abdellah M, Zheng K, Pullerits T, Yartsev A, Sundstr?m V, Scheblykin I G. Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold[J]. Phys. Chem. Chem. Phys., 2015,17(38):24978-24987. |
[41] | Brenes R, Guo D, Osherov A, Noel N K, Eames C, Hutter E M, Pathak S K, Niroui F, Friend R H, Islam M S, Snaith H J, Bulovic V, Savenije T J, Stranks S D. Metal halide perovskite polycrystalline films exhibiting properties of single crystals[J]. Joule, 2017,1(1):155-167. |
[42] | Zarazua I, Bisquert J, Garcia-Belmonte G. Light-induced space-charge accumulation zone as photovoltaic mechanism in perovskite solar cells[J]. J. Phys. Chem. Lett., 2016,7(3):525-528. |
[43] | Almora O, Zarazua I, Mas-Marza E, Mora-Sero I, Bisquert J, Garcia-Belmonte G. Capacitive dark currents, hysteresis, and electrode polarization in lead halide perovskite solar cells[J]. J. Phys. Chem. Lett., 2015,6(9):1645-1652. |
[44] | Correa-Baena J P, Turren-Cruz S H, Tress W, Hagfeldt A, Aranda C, Shooshtari L, Bisquert J, Guerrero A. Changes from bulk to surface recombination mechanisms between pristine and cycled perovskite solar cells[J]. ACS Energy Lett., 2017,2(3):681-688. |
[45] | Subhani W S, Wang K, Du M Y, Wang X L, Liu S Z. Interface-modification-induced gradient energy band for highly efficient CsPbIBr2 perovskite solar cells[J]. Adv. Energy Mater., 2019,9(21):1703785. |
[46] | Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N L, Yi C, Nazeeruddin M K, Gr?tzel M. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells[J]. J. Am. Chem. Soc., 2011,133(45):18042-18045. |
[47] | Guillén E, Ramos F J, Anta J A, Ahmad S. Elucidating transport-recombination mechanisms in perovskite solar cells by small-perturbation techniques[J]. J. Phys. Chem. Lett., 2014,118(40):22913-22922. |
[48] | Yadav P, Alotaibi M H, Arora N, Dar M I, Zakeeruddin S M, Gr?tzel M. Influence of the nature of a cation on dynamics of charge transfer processes in perovskite solar cells[J]. Adv. Funct. Mater., 2018,28(8):1706073. |
[49] | Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico M E, Kirkpatrik J, Ball J M, Docampo P, McPherson I, Snaith H J. Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells[J]. Phys. Chem. Chem. Phys., 2013,15(7):2572-2579. |
[50] | Correa-Baena J P, Abate A, Saliba M, Tress W, Jesper Jacobsson T, Gr?tzel M, Hagfeldt A. The rapid evolution of highly efficient perovskite solar cells[J]. Energy Environ. Sci., 2017,10(3):710-727. |
[51] | Correa-Baena J P, Anaya M, Lozano G, Tress W, Domanski K, Saliba M, Matsui T, Jacobsson T J, Calvo M E, Abate A, Gr?tzel M, Míguez H, Hagfeldt A. Unbroken perovskite: interplay of morphology, electro-optical properties, and ionic movement[J]. Adv. Mater., 2016,28(25):5031-5037. |
[52] | Pérez-del-Rey D, Forgács D, Hutter E M, Savenije T J, Nordlund D, Schulz P, Berry J J, Sessolo M, Bolink H J. Strontium insertion in methylammonium lead iodide: long charge carrier lifetime and high fill-factor solar cells[J]. Adv. Mater., 2016,28(44):9839-9845. |
/
〈 |
|
〉 |