欢迎访问《电化学(中英文)》期刊官方网站,今天是
展望

钯基氧还原和乙醇氧化反应电催化剂:关于结构和机理研究的一些近期见解

  • 吴志鹏 ,
  • 钟传建
展开
  • 1.郑州大学化学学院绿色催化中心,河南 郑州 450001
    2.纽约州立大学宾汉姆顿分校化学系, 纽约 13902
    3.南洋理工大学化学与生物医学工程学院,新加坡 637459

收稿日期: 2020-12-31

  修回日期: 2021-02-21

  网络出版日期: 2021-03-12

Pd-Based Electrocatalysts for Oxygen Reduction and Ethanol Oxidation Reactions: Some Recent Insights into Structures and Mechanisms

  • Zhi-Peng Wu ,
  • Chuan-Jian Zhong
Expand
  • 1. Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
    2. Department of Chemistry, State University of New York at Binghamton,Binghamton, New York 13902, USA
    3. School of Chemical and Biomedical Engineering,Nanyang Technological University, 637459, Singapore
Chuan-Jian Zhong, Tel: (1) 607-777-4605, E-mail: cjzhong@binghamton.edu.
* Zhi-Peng Wu, Tel: (86)15222021302, E-mail: zpwu@tju.edu.cn;

Received date: 2020-12-31

  Revised date: 2021-02-21

  Online published: 2021-03-12

摘要

质子交换膜燃料电池和直接乙醇燃料电池已成为可持续性清洁能源研究的一个聚焦点。在燃料电池中,氧还原反应和乙醇氧化反应是两个重要的反应,其相关高活性、高稳定性并且廉价的催化剂的研发仍然存在很多问题,极大地制约了燃料电池的大规模商业化应用。其中的挑战主要来自于对纳米催化剂结构和反应机理的有限认识。由于实验表征理论计算的结合,对钯基合金纳米材料电催化剂的研究得到了很大的进展。本文从实验和理论计算两个方面出发,重点讨论了应用于氧还原反应和乙醇氧化反应的钯和钯基电催化剂的结构和反应机理方面的近期研究的一些见解。这些见解对未来催化剂的设计与优化有一定的启发意义。

本文引用格式

吴志鹏 , 钟传建 . 钯基氧还原和乙醇氧化反应电催化剂:关于结构和机理研究的一些近期见解[J]. 电化学, 2021 , 27(2) : 144 -156 . DOI: 10.13208/j.electrochem.201241

Abstract

The development of efficient electrocatalysts for applications in fuel cells, including proton-exchange membrane fuel cell (PEMFC) and direct ethanol fuel cell (DEFC), has attracted extensive research attention in recent years. Oxygen reduction reaction and ethanol oxidation reaction are two of the key reactions where the design of active, stable and low-cost electrocatalysts is critical for the mass commercializations of PEMFCs and DEFCs. This challenge stems largely from the limited understanding of the catalyst structures and reaction mechanisms. Progress has been made in investigations of electrocatalysts derived from Pd-based alloy nanomaterials both experimentally and computationally. We highlight herein some of the recent insights into the catalyst structures and reaction mechanisms of Pd and Pd-based electrocatalysts in oxygen reduction reaction and ethanol oxidation reaction. Both experimental and computational aspects will be discussed, along with their implications for the design of optimal electrocatalysts.

参考文献

[1] Kowal A, Li M, Shao M, Sasaki K, Vukmirovic M B, Zhang J, Marinkovic N S, Liu P, Frenkel A I, Adzic R R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2[J]. Nat. Mater., 2009,8(4):325-330.
[2] Wu Z P, Miao B, Hopkins E, Park K, Chen Y F, Jiang H X, Zhang M H, Zhong C J, Wang L C. Poisonous species in complete ethanol oxidation reaction on palladium catalysts[J]. J. Phys. Chem. C, 2019,123(34):20853-20868.
[3] Wu Z P, Zhang M H, Jiang H X, Zhong C J, Chen Y F, Wang L C. Competitive C-C and C-H bond scission in the ethanol oxidation reaction on Cu(100) and the effect of an alkaline environment[J]. Phys. Chem. Chem. Phys., 2017,19(23):15444-15453.
[4] Wang K L, Wang F, Zhao Y F, Zhang W Q. Surface-tailored PtPdCu ultrathin nanowires as advanced electrocatalysts for ethanol oxidation and oxygen reduction reaction in direct ethanol fuel cell[J]. J. Energy Chem., 2021,52:251-261.
[5] Guo J S, Chen R R, Zhu F H, Sun S G, Villullas H M. New understandings of ethanol oxidation reaction mechanism on Pd/C and Pd2Ru/C catalysts in alkaline direct ethanol fuel cells[J]. Appl. Catal. B - Environ., 2018,224:602-611.
[6] Shao M H, Chang Q W, Dodelet J P, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chem. Rev., 2016,116(6):3594-3657.
[7] Jiang K Z, Wang P T, Guo S J, Zhang X, Shen X, Lu G, Su D, Huang X Q. Ordered PdCu-based nanoparticles as bifunctional oxygenreduction and ethanol-oxidation electrocatalysts[J]. Angew. Chem. In. Ed., 2016,55(31):9030-9035.
[8] Wu Z P, Shan S Y, Zang S Q, Zhong C J. Dynamic core-shell and alloy structures of multimetallic nanomaterials and their catalytic synergies[J]. Acc. Chem. Res., 2020,53(12):2913-2924.
[9] Xiao F, Wang Y C, Wu Z P, Chen G Y, Yang F, Zhu S Q, Siddharth K, Kong Z J, Lu A L, Li J C, Zhong C J, Zhou Z Y, Sha M H. Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells[J]. Adv. Mater., 2021: 2006292.
[10] Miao B, Wu Z P, Zhang M H, Chen Y F, Wang L C. Role of Ni in bimetallic PdNi catalysts for ethanol oxidation reaction[J]. J. Phys. Chem. C , 2018,122(39):22448-22459.
[11] Munoz F, Hua C, Kwong T, Tran L, Nguyen T Q, Haan J L. Palladium-copper electrocatalyst for the promotion of the electrochemical oxidation of polyalcohol fuels in the alkaline direct alcohol fuel cell[J]. Appl. Catal. B - Environ., 2015,174:323-328.
[12] Monyoncho E A, Steinmann S N, Michel C, Baranova E A, Woo T K, Sautet P. Ethanol electro-oxidation on palladium revisited using polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) and density functional theory (DFT): Why is it difficult to break the C-C bond?[J]. ACS Catal., 2016,6(8):4894-4906.
[13] Tang W, Zhang L, Henkelman G. Catalytic activity of Pd/Cu random alloy nanoparticles for oxygen reduction[J]. J. Phys. Chem. Lett. , 2011,2(11):1328-1331.
[14] Miao B, Wu Z P, Xu H, Zhang M H, Chen Y F, Wang L C. Ir catalysts: Preventing CH3COOH formation in ethanol oxidation[J]. Chem. Phys. Lett. , 2017,688:92-97.
[15] Wu Z P, Shan S Y, Xie Z H, Kang N, Park K, Hopkins E, Yan S, Sharma A, Luo J, Wang J, Petkov V, Wang L C, Zhong C J. Revealing the role of phase structures of bimetallic nanocatalysts in the oxygen reduction reaction[J]. ACS Catal., 2018,8(12):11302-11313.
[16] Miao B, Wu Z P, Xu H, Zhang M H, Chen Y F, Wang L C. DFT studies on the key competing reaction steps towards complete ethanol oxidation on transition metal catalysts[J]. Comput. Mater. Sci. , 2019,156:175-186.
[17] Sha Y, Yu T H, Merinov B V, Goddard W A. DFT prediction of oxygen reduction reaction on palladium-copper alloy surfaces[J]. ACS Catal., 2014,4(4):1189-1197.
[18] Petkov V, Maswadeh Y, Vargas J A, Shan S Y, Kareem H, Wu Z P, Luo J, Zhong C J, Shastri S, Kenesei P. Deviations from Vegard's law and evolution of the electrocatalytic activity and stability of Pt-based nanoalloys inside fuel cells by in operando X-ray spectroscopy and total scattering[J]. Nanoscale, 2019,11(12):5512-5525.
[19] Kong Z, Maswadeh Y, Vargas J A, Kong Z J, Maswadeh Y, Vargas J A, Shan S Y, Wu Z P, Kareem H, Leff A C, Tran D T, Chang F F, Yan S, Nam, S, Zhao X F, Lee J M, Luo J, Shastri S, Yu G, Petkov V, Zhong C J. Origin of high activity and durability of twisty nanowire alloy catalysts under oxygen reduction and fuel cell operating conditions[J]. J. Am. Chem. Soc., 2020,142(3):1287-1299.
[20] Wu Z P, Lu X F, Zang S Q, Lou X W. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction[J]. Adv. Funct. Mater., 2020,30(15):1910274.
[21] Wu Z P, Caracciolo D T, Maswadeh Y, Wen J G, Kong Z J, Shan S Y, Vargas J A, Yan S, Hopkins E, Park K, Sharma A, Ren Y, Petkov V, Wang L C, Zhong C J. Alloying-realloying enabled high durability for Pt-Pd-3d-transition metal nanoparticle fuel cell catalysts[J]. Nat. Commun., 2021,12(1):859.
[22] Wu J F, Shan S Y, Luo J, Joseph P, Petkoy V, Zhong C J. PdCu nanoalloy electrocatalysts in oxygen reduction reaction: role of composition and phase state in catalytic synergy[J]. ACS Appl. Mater. Interfaces, 2015,7(46):25906-25913.
[23] Zhang W, Shan S Y, Luo J, Fisher A, Chen J F, Zhong C J, Zhu J Q, Cheng D J. Origin of enhanced activities for CO oxidation and O2 reaction over composition-optimized Pd50Cu50 nanoalloy catalysts[J]. J. Phys. Chem. C, 2017,121(20):11010-11020.
[24] Wu J F, Shan S Y, Petkov V, Prasai B, Cronk H, Joseph P, Luo J, Zhong C J. Composition-structure-activity relationships for palladiumalloyed nanocatalysts in oxygen reduction reaction: An ex-situ/in-situ high energy X-ray diffraction study[J]. ACS Catal., 2015,5(9):5317-5327.
[25] Maswadeh Y, Shan S Y, Prasai B, Zhao Y G, Xie Z H, Wu Z P, Luo J, Ren Y, Zhong C J, Petkov V. Charting the relationship between phase type-surface area-interactions between the constituent atoms and oxygen reduction activity of Pd-Cu nanocatalysts inside fuel cells by in operando high-energy X-ray diffraction[J]. J. Mater. Chem. A, 2017,5(16):7355-7365.
[26] Wang C, Chen D P, Sang X, Unocic R R, Skrabalak S E. Size-dependent disorder-order transformation in the synjournal of monodisperse intermetallic PdCu nanocatalysts[J]. ACS Nano, 2016,10(6):6345-6353.
[27] Wanjala B N, Fang B, Loukrakpam R, Chen Y S, Engelhard M, Luo J, Yin J, Yang L F, Shan S Y, Zhong C J. Role of metal coordination structures in enhancement of electrocatalytic activity of ternary nanoalloys for oxygen reduction reaction[J]. ACS Catal., 2012,2(5):795-806.
[28] Petkov V, Maswadeh Y, Zhao Y G, Lu A L, Cronk H, Chang F F, Shan S Y, Kareem H, Luo J, Zhong C J, Shastri S, Kenesei P. Nanoalloy catalysts inside fuel cells: An atomic-level perspective on the functionality by combined in operando X-ray spectroscopy and total scattering[J]. Nano Energy, 2018,49:209-220.
[29] Petkov V, Shastri S, Kim J W, Shan S Y, Luo J, Wu J F, Zhong C J. Application of differential resonant high-energy X-ray diffraction to three-dimensional structure studies of nanosized materials: A case study of Pt-Pd nanoalloy catalysts[J]. Acta Crystallogr. Sect. A, 2018,74(5):553-566.
[30] Wu J F, Shan S Y, Cronk H, Chang F F, Kareern H, Zhao Y G, Luo J, Petkov V, Zhong C J. Understanding composition-dependent synergy of PtPd alloy nanoparticles in electrocatalytic oxygen reduction reaction[J]. J. Phys. Chem. C, 2017,121(26):14128-14136.
[31] Zhou Z Y, Wang Q, Lin J L, Tian N, Sun S G. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media[J]. Electrochim. Acta, 2010,55(27):7995-7999.
[32] Yang Y Y, Ren J, Li Q X, Zhou Z Y, Sun S G, Cai W B. Electrocatalysis of ethanol on a Pd electrode in alkaline media: An in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study[J]. ACS Catal., 2014,4(3):798-803.
[33] Chen H M, Xing Z L, Zhu S Q, Zhang L L, Chang Q W, Huang J L, Cai W B, Kang N, Zhong C J, Shao M H. Palladium modified gold nanoparticles as electrocatalysts for ethanol electrooxidation[J]. J. Power Sources, 2016,321:264-269.
[34] Liang Z X, Zhao T S, Xu J B, Zhu L D. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media[J]. Electrochim. Acta, 2009,54(8):2203-2208.
[35] Wang H F, Liu Z P. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network[J]. J. Am. Chem. Soc., 2008,130(33):10996-11004.
[36] Wang E D, Xu J B, Zhao T S. Density functional theory studies of the structure sensitivity of ethanol oxidation on palladium surfaces[J]. J. Phys. Chem. C, 2010,114(23):10489-10497.
[37] Yin J, Shan S Y, Ng M S, Yang L F, Mott D, Fang W Q, Kang N, Luo J, Zhong C J. Catalytic and electrocatalytic oxidation of ethanol over palladium-based nanoalloy catalysts[J]. Langmuir, 2013,29(29):9249-9258.
[38] Liao Y, Yu G, Zhang Y, Guo T T, Chang F F, Zhong C J. Composition-tunable PtCu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction[J]. J. Phys. Chem. C, 2016,120(19):10476-10484.
[39] Lu A L, Wu Z P, Chen B H, Peng D L, Yan S, Shan S Y, Skeete Z, Chang F F, Chen Y Z, Zheng H F, Zeng D Q, Yang L F, Sharma A J, Luo J, Wang L C, Petkov V, Zhong C J. From a Au-rich core/PtNi-rich shell to a Ni-rich core/PtAu-rich shell: an effective thermochemical pathway to nanoengineering catalysts for fuel cells[J]. J. Mater. Chem. A, 2018,6(12):5143-5155.
文章导航

/