欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

氮掺杂碳原位锚定铜纳米颗粒用于高效氧还原反应催化剂

  • 袁会芳 ,
  • 张越 ,
  • 翟兴吾 ,
  • 胡立兵 ,
  • 葛桂贤 ,
  • 王刚 ,
  • 于锋 ,
  • 代斌
展开
  • 1.石河子大学化学化工学院,新疆兵团绿色化工过程重点实验室,新疆 石河子 832003
    2.石河子大学理学院,新疆 石河子 832003
    3.石河子大学兵团工业技术研究院,清洁能源转化与储存研究组,新疆 石河子 832003
第一联系人:

#两位作者对此文章贡献相同。

db_tea@shzu.edu.cn
* Tel: (86-993)2057272, E-mail: yufeng05@mail.ipc.ac.cn;

收稿日期: 2020-07-24

  修回日期: 2021-02-18

  网络出版日期: 2021-02-22

基金资助

国家自然科学基金项目(21865025);国家自然科学基金项目(51962032)

Copper Nanoparticles In-Situ Anchored on Nitrogen-Doped Carbon for High-Efficiency Oxygen Reduction Reaction Electrocatalyst

  • Hui-Fang Yuan ,
  • Yue Zhang ,
  • Xing-Wu Zhai ,
  • Li-Bing Hu ,
  • Gui-Xian Ge ,
  • Gang Wang ,
  • Feng Yu ,
  • Bin Dai
Expand
  • 1. Key Laboratory of Green Chemical Process of Xinjiang Corps, College of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
    2. School of Science, Shihezi University, Shihezi 832003, Xinjiang, China
    3. Shihezi University Bingtuan Industrial Technology Research Institute Clean Energy Conversion and Storage Research Group, Shihezi 832003, Xinjiang, China

Received date: 2020-07-24

  Revised date: 2021-02-18

  Online published: 2021-02-22

摘要

与贵金属铂基电化学氧还原反应(ORR)催化剂相比,廉价的非贵金属催化剂引起了广泛的关注。本文以壳聚糖作为一种富含氮和碳元素的生物质资源,利用碳浴法成功制备了氮掺杂碳原位负载铜纳米颗粒(Cu/N-C)催化剂。纯壳聚糖碳化得到的样品N-C的比表面积为67.5 m2·g-1、平均孔径0.14 nm、平均孔体积8.00 m2·g-1,与之相比,Cu/N-C比表面积可达607.3 m2·g-1、平均孔径为2.5 nm、平均孔体积为0.40 cm3·g-1。通过密度泛函理论(DFT)进行计算表明,Cu(111)/N-C的自由能值低于N-C,更有利于氧还原催化进行。在0.1 mol·L-1 KOH的介质中,Cu/N-C不仅表现出优异的起始和半波电势(分别为0.96 V和0.84 V),而且还表现出了优异的抗甲醇性能和稳定性,并且Cu元素掺杂量达到1.67wt.%。

本文引用格式

袁会芳 , 张越 , 翟兴吾 , 胡立兵 , 葛桂贤 , 王刚 , 于锋 , 代斌 . 氮掺杂碳原位锚定铜纳米颗粒用于高效氧还原反应催化剂[J]. 电化学, 2021 , 27(6) : 671 -680 . DOI: 10.13208/j.electrochem.200724

Abstract

Compared with noble metal platinum (Pt)-based catalysts, inexpensive non-noble metal electrocatalysts have attracted extensive attention for oxygen reduction reaction (ORR). Herein, chitosan as a kind of biomass resource rich in nitrogen and carbon was used to prepare nitrogen-doped carbon (N-C) and N-C in-situ anchored by copper nanoparticles (Cu/N-C). The as-obtained N-C and Cu/N-C nanoparticles were successfully used as non-noble eletrocatalysts tested for ORR. Compared with the N-C, the Cu/N-C showed the high surface area of 607.3 m 2·g-1 with the mean pore size of 2.5 nm and the pore volume of 0.40 cm3·g-1. The most positive Gibbs free energy change was the rate determining step for ORR process with the 4e mechanism, where the value of the Cu(111)/N-C(-0.39 eV) was lower than that of the N-C(-0.26 eV). The Cu/N-C exhibited superior onset and half-wave potentials (0.96 V and 0.84 V, respectively) in alkaline media(0.1 mol·L-1 KOH), all of which are much better than those measured for N-C and commercial Pt/C. Furthermore, the Cu/N-C showed superior methanol crossover avoidance and oxygen reduction stability.

参考文献

[1] Lu X F, Xia B Y, Zang S Q, Lou X W. Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2019, 59(12): 4634-4650.
[2] Mamtani K, Jain D, Dogu D, Gustin V, Gunduz S, Co A C, Ozkan U S. Insights into oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) active sites for nitrogen-doped carbon nanostructures (CNx) in acidic media[J]. Appl. Catal. B - Environ., 2018, 220: 88-97.
[3] Jia Q Y, Zhao Z P, Cao L, Li J K, Ghoshal S, Davies V, Stavitski E, Attenkofer K, Liu Z Y, Li M F, Duan X F, Mukerjee S, Mueller T, Huang Y. Roles of Mo surface dopants in enhancing the ORR performance of octahedral PtNi nanoparticles[J]. Nano Lett., 2018, 18(2): 798-804.
[4] Wang Y Q, Yu F, Zhu M Y, Ma C H, Zhao D, Wang C, Zhou A M, Dai B, Ji J Y, Guo X H. 3 N-Doping of plasma exfoliated graphene oxide via dielectric barrier discharge plasma treatment for the oxygen reduction reaction[J]. J. Mater. Chem. A, 2018, 6(5): 2011-2017.
[5] Wang X Q, Li Z J, Qu Y T, Yuan T W, Wang W Y, Wu Y, Li Y D. Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design[J]. Chem, 2019, 5(6): 1486-1511.
[6] Sun X, Atiyeh H K, Li M X, Chen Y. Biochar facilitated bioprocessing and biorefinery for productions of biofuel and chemicals: A review[J]. Bioresource Technol., 2020, 295: 122252.
[7] Kim C, Dionigi F, Beermann V, Wang X L, Moller T, Strasser P. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2 RR)[J]. Adv. Mater., 2018, 31(SI): 1805617.
[8] Chen M J, Hwang S, Li J Z, Karakalos S, Chen K, He Y H, Mukherjee S, Su D, Wu G. Pt alloy nanoparticles decorated on large-size nitrogen-doped graphene tubes for highly stable oxygen-reduction catalysts[J]. Nanoscale, 2018, 10(36): 17318-17326.
[9] Wei Q L, Zhang G X, Yang X H, Chenitz R, Barham D, Yang L J, Ye S Y, Knights S, Sun S H. 3D porous Fe/N/C spherical nanostructures as high-performance electrocatalysts for oxygen reduction in both alkaline and acidic media[J]. ACS Appl Mater. Inter., 2017, 9(42): 36944-36954.
[10] Asset T, Chattot R, Fontana M, Mercier-Guyon B, Job N, Dubau L, Maillard F. A review on recent developments and prospects for the oxygen reduction reaction on hollow Pt-alloy nanoparticles[J]. ChemPhysChem, 2018, 19(13): 1552-1567.
[11] Yang H, Ko Y, Lee W, Zuttel A, Kim W. Nitrogen-doped carbon black supported Pt-M (M = Pd, Fe, Ni) alloy catalysts for oxygen reduction reaction in proton exchange membrane fuel cell[J]. Mater. Today Energy, 2019, 13: 374-381.
[12] Zhang G R, Wollner S. Hollowed structured PtNi bifunctional electrocatalyst with record low total overpotential for oxygen reduction and oxygen evolution reactions[J]. Appl. Catal. B - Environ., 2018, 222: 26-34.
[13] Wang N N, Li Y Q, Guo Z L, Li H, Hayase S, Ma T L. Minute quantities of hexagonal nanoplates PtFe alloy with facile operating conditions enhanced electrocatalytic activity and durability for oxygen reduction reaction[J]. J. Alloy. Compd., 2018, 752: 23-31.
[14] Yu F, Liu M C, Ma C H, Di L B, Dai B, Zhang L L. A review on the promising plasma-assisted preparation of Electrocatalysts[J]. Nanomaterials, 2019, 9(10): 1436.
[15] Martinez U, Babu S K, Holby E F, Chung H T, Yin X, Zelenay P. Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction[J]. Adv., Mater., 2019, 31(SI): 1806545.
[16] Cai P W, Ci S Q, Zhang E H, Shao P, Cao C S, Wen Z H. FeCo alloy nanoparticles confined in carbon layers as high-activity and robust cathode catalyst for Zn-Air battery[J]. Electrochim. Acta, 2016, 220: 354-362.
[17] Zhao X T, Abbas S C, Huang Y Y, Lv J Q, Wu M X, Wang Y B. Robust and highly active FeNi@NCNT nanowire arrays as integrated air electrode for flexible solid-state rechargeable Zn-Air batteries[J]. Adv. Mater., Interfaces, 2018, 5(9): 1701448.
[18] Guan B Y, Lu Y, Wang Y, Wu M H, Lou X W. Porous iron-cobalt alloy/nitrogen-doped carbon cages synthesized via pyrolysis of complex metal-organic framework hybrids for oxygen reduction[J]. Adv. Funct. Mater., 2018, 28(10): 1706738.
[19] Xiong Y, Yang Y, DiSalvo F J, Abruna H D. Metal-organic-framework-derived Co-Fe bimetallic oxygen reduction electrocatalysts for alkaline fuel cells[J]. J. Am. Chem. Soc., 2019, 141(27): 10744-10750.
[20] Yin D D, Han C, Bo X J, Liu J, Guo L P. Prussian blue analogues derived iron-cobalt alloy embedded in nitrogen-doped porous carbon nanofibers for efficient oxygen reduction reaction in both alkaline and acidic solutions[J]. J. Colloid Interface Sci., 2019, 533: 578-587.
[21] Yan X Y, Tong X L, Zhang Y F, Han X D, Wang Y Y, Jin G Q, Qin Y, Guo X Y. Cuprous oxide nanoparticles dispersed on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction[J]. Chem. Commun., 2012, 48(13): 1892-1894.
[22] Cracknell J A, Vincent K A, Armstrong F A. Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis[J]. Chem. Rev., 2008, 108(7): 2439-2461.
[23] Solomon E I, Sundaram U M, Machonkin T E. Multicopper oxidases and oxygenases[J]. Chem. Rev., 1996, 96(7): 2563-2605.
[24] Zhao Y Y, Chu Y, Ju X P, Zhao J S, Kong L Q, Zhang Y, Carbon-supported copper-based nitrogen-containing sup-ramolecule as an efficient oxygen reduction reaction catalyst in neutral medium[J]. Catalysts, 2018, 8(2): 53.
[25] Pan Z F, An L, Zhao T S, Tang Z K. Advances and challenges in alkaline anion exchange membrane fuel cells[J]. Prog. Energy Combust. Sci., 2018, 66: 141-175.
[26] Kumar M N V R. A review of chitin and chitosan applications[J]. React. Funct. Polym., 2000, 46(1): 1-27.
[27] Qu J, Hu Q L, Shen K, Zhang K, Li Y L, Li H, Zhang Q R, Wang J Q, Quan W Q. The preparation and characterization of chitosan rods modified with Fe3+ by a chelation mechanism[J]. Carbohyd. Res., 2011, 346(6): 822-827.
[28] Wang L, Liu M C, Wang G, Dai B, Yu F, Zhang J L. An ultralight nitrogen-doped carbon aerogel anchored by Ni-NiO nanoparticles for enhanced microwave adsorption performance[J]. J. Alloy. Compd., 2019, 776: 43-51.
[29] Liu M C, Guo X H, Hu L B, Yuan H F, Wang G, Dai B, Zhang L L, Yu F. Fe3O4/Fe3C@nitrogen-doped carbon for enhancing oxygen reduction reaction[J]. ChemNanoMat, 2018, 5(2): 187-193.
[30] Yu H Y, Fisher A, Cheng D J, Cao D P. Cu,N-codoped hierarchical porous carbons as electrocatalysts for oxygen reduction reaction[J]. ACS Appl. Mater. Inter., 2016, 8(33): 21431-21439.
[31] Nie Y, Li L, Wei Z D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chem. Soc. Rev., 2015, 44(8): 2168-2201.
[32] Guo D H, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271): 361-365.
[33] Borghei M, Lehtonen J, Liu L, Rojas O J. Advanced bio-mass-derived electrocatalysts for the oxygen reduction reaction[J]. Adv. Mater., 2018, 30(24): 1703691.
[34] Yang L, Zeng X F, Wang D, Cao D P. Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery[J]. Energy Stor. Mater., 2018, 12: 277-283.
[35] Rinaudo M. Chitin and chitosan: Properties and applications[J]. Prog. Polym. Sci., 2006, 31(7): 603-632.
[36] Huang C L, Zhang H Y, Sun Z Y, Liu Z M. Chitosan-mediated synjournal of mesoporous α-Fe2O3 nanoparticles and their applications in catalyzing selective oxidation of cyclohexane[J]. Sci. China. Chem., 2010, 53(7): 1502-1508.
[37] Guibal E. Heterogeneous catalysis on chitosan-based materials: a review[J]. Prog. Polym. Sci., 2005, 30(1): 71-109.
[38] Huang J Y, Liang Y R, Hu H, Liu S M, Cai Y J, Dong H W, Zheng M T, Xiao Y, Liu Y L. Ultrahigh-surface-area hierarchical porous carbon from chitosan: acetic acid mediated efficient synjournal and its application in superior supercapacitors[J]. J. Mater. Chem. A, 2017, 5(47): 24775-24781.
[39] Hu L B, Wei Z X, Yu F, Yuan H F, Liu M C, Wang G, Peng B H, Dai B, Ma J M. Defective ZnS nanoparticles anchored in situ on N-doped carbon as a superior oxygen reduction reaction catalyst[J] J. Energy. Chem., 2019, 39: 152-159.
文章导航

/