欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

电化学门控调节具有平行路径的单分子电路中电子传输

  • 苏俊青 ,
  • 周一帆 ,
  • 童凌 ,
  • 王亚浩 ,
  • 郑菊芳 ,
  • 陈竞哲 ,
  • 周小顺
展开
  • 1.浙江师范大学物理化学研究所,先进催化材料教育部重点实验室,浙江 金华 321004
    2.上海大学物理系,上海 200444

收稿日期: 2021-01-13

  修回日期: 2021-02-11

  网络出版日期: 2021-02-18

Electrochemical Gating Single-Molecule Circuits with Parallel Paths

  • Jun-Qing Su ,
  • Yi-Fan Zhou ,
  • Ling Tong ,
  • Ya-Hao Wang ,
  • Ju-Fang Zheng ,
  • Jing-Zhe Chen ,
  • Xiao-Shun Zhou
Expand
  • 1. Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
    2. Department of Physics, Shanghai University, Shanghai 200444, China
First author contact:

# These authors contributed equally to this work.

* Tel: (86-579)82286876; E-mail: xszhou@zjnu.edu.cn

Received date: 2021-01-13

  Revised date: 2021-02-11

  Online published: 2021-02-18

Supported by

National Natural Science Foundation of China(21872126);Zhejiang Provincial Natural Science Foundation of China(LQ21B030010)

摘要

电化学门控已成为一种可行且高效调节单分子电导的方法。在本研究中,我们证实了具有两个平行苯环的单分子电路中电子传输可以通过电化学门控控制。首先,我们利用STM-BJ技术以金为电极构筑了具有两条平行路径的单分子结。与单条路径的单分子结相比,两条路径的分子结由于具有增强性量子干涉效应,具有2.82倍的电导值。进一步地,我们利用电化学门控对具有两个平行苯环的单分结的电导进行调控,获得了333%·V-1调节比。结合DFT计算,发现在E=EF附近的V形透射系数谱图导致了实验观测的电导门控行为。本研究揭示了具有平行路径的单分子电路的电化学门控行为,并为设计高性能分子器件的分子材料提供了新的途径。

本文引用格式

苏俊青 , 周一帆 , 童凌 , 王亚浩 , 郑菊芳 , 陈竞哲 , 周小顺 . 电化学门控调节具有平行路径的单分子电路中电子传输[J]. 电化学, 2021 , 27(2) : 195 -201 . DOI: 10.13208/j.electrochem.201243

Abstract

Electrochemical gating has emerged as a feasible and powerful method to tune single-molecule conductance. Herein, we demonstrate that the electron transport through single-molecule circuits with two benzene rings in parallel could be efficiently gated by electrochemistry. The molecular junctions with two parallel paths are fabricated with Au electrodes by STM break junction (STM-BJ) technique. Their conductance value exhibits a 2.82-fold enhancement by the constructive quantum interference compared to single-molecule junctions with single path for electron tunneling. Furthermore, the conductance of para-benzene based molecule could be electrochemically tuned with a modulation ratio of about 333%·V-1. With the help of DFT calculations, a V-shape spectra of energy-dependent transmission coefficients T(E) around E = EF leads to the conductance gating behavior. The current work sheds a light on the electrochemical gating of single-molecule circuits with parallel paths, and offers a new way to design molecular materials for a high-performance molecular device.

参考文献

[1] Xiang D, Wang X L, Jia C C, Lee T, Guo X F. Molecular-scale electronics: from concept to function[J]. Chem. Rev., 2016,116(7):4318-4440.
[2] Brooke R J, Szumski D S, Vezzoli A, Higgins S J, Nichols R J, Schwarzacher, W. Dual control of molecular conductance through pH and potential in single-molecule devices[J]. Nano Lett., 2018,18(2):1317-1322.
[3] Li Z H, Smeu M, Afsari S, Xing Y J, Ratner M A, Borguet E. Single-molecule sensing of environmental pH-an STM break junction and NEGF-DFT approach[J]. Angew. Chem. Int. Ed., 2014,53(4):1098-1102.
[4] Cai S N, Deng W T, Huang F F, Chen L J, Tang C, He W X, Long S C, Li R H, Tan Z B, Liu J Y, Shi J, Liu Z T, Xiao Z Y, Zhang D Q, Hong W J. Light-driven reversible intermolecular proton transfer at single-molecule junctions[J]. Angew. Chem. Int. Ed., 2019,58(12):3829-3833.
[5] Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F. Covalently bonded single-mole-cule junctions with stable and reversible photoswitched conductivity-SM[J]. Science, 2016,352(6292):1443-1445.
[6] Sendler T, Luka-Guth K, Wieser M, Lokamani Wolf J, Helm M, Gemming S, Kerbusch J, Scheer E, Huhn T, Erbe A. Light-induced switching of tunable single-molecule junctions[J]. Adv. Sci., 2015,2(5):1500017.
[7] Mannini M, Pineider F, Danieli C, Totti F, Sorace L, Sainctavit P, Arrio M A, Otero E, Joly L, Cezar J C, Cornia A, Sessoli R. Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets[J]. Nature, 2010,468(7322):417-421.
[8] Kay N J, Higgins S J, Jeppesen J O, Leary E, Lycoops J, Ulstrup J, Nichols R J. Single-molecule electrochemical gating in ionic liquids[J]. J. Am. Chem. Soc., 2012,134(40):16817-16826.
[9] Song H, Kim Y, Jang Y H, Jeong H, Reed M A, Lee T. Observation of molecular orbital gating[J]. Nature, 2009,462(7276):1039-1043.
[10] Huang C C, Rudnev A V, Hong W J, Wandlowski T. Break junction under electrochemical gating: testbed for single-molecule electronics[J]. Chem. Soc. Rev., 2015,44(4):889-901.
[11] Osorio H M, Catarelli S, Cea P, Gluyas J B G, Hartl F, Higgins S J, Leary E, Low P J, Martin S, Nichols R J, Tory J, Ulstrup J, Vezzoli A, Milan D C, Zeng Q . Electrochemical single-molecule transistors with optimized gate coupling[J]. J. Am. Chem. Soc., 2015,137(45):14319-14328.
[12] Díez-Pérez I, Li Z H, Guo S Y, Madden C, Huang H L, Che Y K, Yang X M, Zang L, Tao N J. Ambipolar transport in an electrochemically gated single-molecule field-effect transistor[J]. ACS Nano, 2012,6(8):7044-7052.
[13] Ramachandran R, Li H B, Lo W Y, Neshchadin A, Yu L P, Hihath J. An electromechanical approach to understanding binding configurations in single-molecule devices[J]. Nano Lett., 2018,18(10):6638-6644.
[14] Zhou X S, Liu L, Fortgang P, Lefevre A S, Serra-Muns A, Raouafi N, Amatore C, Mao B W, Maisonhaute E, Schollhorn B. Do molecular conductances correlate with electrochemical rate constants? Experimental insights[J]. J. Am. Chem. Soc., 2011,133(19):7509-7516.
[15] Sun Y Y, Peng Z L, Hou R, Liang J H, Zheng J F, Zhou X Y, Zhou X S, Jin S, Niu Z J, Mao B W. Enhancing electron transport in molecular wires by insertion of a ferrocene center[J]. Phys. Chem. Chem. Phys., 2014,16(6):2260-2267.
[16] Yuan Y, Yan J F, Lin D Q, Mao B W, Yuan Y F. Ferrocene-alkynyl conjugated molecular wires: synjournal, characterization, and conductance properties[J]. Chem.-Eur. J., 2018,24(14):3545-3555.
[17] Xiao X Y, Brune D, He J, Lindsay S, Gorman C B, Tao N J. Redox-gated electron transport in electrically wired ferrocene molecules[J]. Chem. Phys., 2006,326(1):138-143.
[18] Zhang F, Wu X H, Zhou Y F, Wang Y H, Zhou X S, Shao Y, Li J F, Jin S, Zheng J F. Improving gating efficiency of electron transport through redox-active molecular junctions with conjugated chains[J]. ChemElectroChem, 2020,7(6):1337-1341.
[19] Darwish N, Díez-Pérez I, Guo S Y, Tao N J, Gooding J J, Paddon-Row M N. Single molecular switches: electrochemical gating of a single anthraquinone-based norbornylogous bridge molecule[J]. J. Phys. Chem. C, 2012,116(39):21093-21097.
[20] Darwish N, Diez-Perez I, Da S P, Tao N J, Gooding J J, Paddon-Row M N. Observation of electrochemically controlled quantum interference in a single anthraquinone-based norbornylogous bridge molecule[J]. Angew. Chem. In. Ed., 2012,51(13):3203-3206.
[21] Haiss W, van Zalinge H, Higgins S J, Bethell D, Hobenreich H, Schiffrin D J, Nichols R J. Redox state dependence of single molecule conductivity[J]. J. Am. Chem. Soc., 2003,125(50):15294-15295.
[22] Capozzi B, Chen Q, Darancet P, Kotiuga M, Buzzeo M, Neaton J B, Nuckolls C, Venkataraman L. Tunable charge transport in single-molecule junctions via electrolytic gating[J]. Nano Lett., 2014,14(3):1400-1404.
[23] Baghernejad M, Manrique D Z, Li C, Pope T, Zhumaev U, Pobelov I, Moreno-Garcia P, Kaliginedi V, Huang C, Hong W J, Lambert C, Wandlowski T. Highly-effective gating of single-molecule junctions: an electrochemical approach[J]. Chem. Commun., 2014,50(100):15975-15978.
[24] Wang Y H, Yan F, Li D F, Xi Y F, Cao R, Zheng J F, Shao Y, Jin S, Chen J Z, Zhou X S. Enhanced gating performance of single-molecule conductance by heterocyclic molecules[J]. J. Phys. Chem. Lett., 2021,12(2):758-763.
[25] Bai J, Daaoub A, Sangtarash S, Li X H, Tang Y X, Zou Q, Sadeghi H, Liu S, Huang X J, Tan Z B, Liu J Y, Yang Y, Shi J, Meszaros G, Chen W B, Lambert C, Hong W J. Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating[J]. Nat. Mater., 2019,18(4):364-369.
[26] Li Y Q, Buerkle M, Li G F, Rostamian A, Wang H, Wang Z X, Bowler D R, Miyazaki T, Xiang L M, Asai Y, Zhou G, Tao N J. Author correction: gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport[J]. Nat. Mater., 2020,19(1):127.
[27] Huang B, Liu X, Yuan Y, Hong Z W, Zheng J F, Pei L Q, Shao Y, Li J F, Zhou X S, Chen J Z, Jin S, Mao B W. Controlling and observing sharp-valleyed quantum interference effect in single molecular junctions[J]. J. Am. Chem. Soc., 2018,140(50):17685-17690.
[28] Borges A, Xia J L, Liu S H, Venkataraman L, Solomon G C. The role of through-space interactions in modulating constructive and destructive interference effects in benzene[J]. Nano Lett., 2017,17(7):4436-4442.
[29] Tao C P, Jiang C C, Wang Y H, Zheng J F, Shao Y, Zhou X S. Single-molecule sensing of interfacial acid-base chemistry[J]. J. Phys. Chem. Lett., 2020,11(23):10023-10028.
[30] Kiguchi M, Ohto T, Fujii S, Sugiyasu K, Nakajima S, Takeuchi M, Nakamura H. Single molecular resistive switch obtained via sliding multiple anchoring points and varying effective wire length[J]. J. Am. Chem. Soc., 2014,136(20):7327-7332.
[31] Vazquez H, Skouta R, Schneebeli S, Kamenetska M, Breslow R, Venkataraman L, Hybertsen M S. Probing the conductance superposition law in single-molecule circuits with parallel paths[J]. Nat. Nanotech., 2012,7(10):663-667.
[32] Wang Y H, Li D F, Hong Z W, Liang J H, Han D, Zheng J F, Niu Z J, Mao B W, Zhou X S. Conductance of alkyl-based molecules with one, two and three chains measured by electrochemical STM break junction[J]. Electrochem. Commun., 2014,45:83-86.
[33] Zhang M, Yu L J, Huang Y F, Yan J W, Liu G K, Wu D Y, Tian Z Q, Mao B W. Extending the shell-isolated nanoparticle-enhanced Raman spectroscopy approach to interfacial ionic liquids at single crystal electrode surfaces[J]. Chem. Commun., 2014,50(94):14740-14743.
[34] Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices[J]. Phys. Rev. B, 2001,63(24):245407.
[35] Chen J Z, Thygesen K S, Jacobsen K W. Ab initio none-quilibrium quantum transport and forces with the real-space projector augmented wave method[J]. Phys. Rev. B, 2012,85(15):155140.
[36] Liu C Y, Wang H F, Ren Z G, Braunstein P, Lang J P. Fine-tuning of luminescence through changes in Au-S bond lengths as a function of temperature or solvent[J]. Inorg. Chem., 2019,58(13):8533-8540.
[37] Pommerehne J, Vestweber H, Guss W, Mahrt R F, B?ssler H, Porsch M, Daub J. Efficient two layer LEDs on a polymer blend basis[J]. Adv. Mater., 1995,7(6):551-554.
[38] Low J Z, Capozzi B, Cui J, Wei S J, Venkataraman L, Campos L M. Tuning the polarity of charge carriers using electron deficient thiophenes[J]. Chem. Sci., 2017,8(4):3254-3259.
文章导航

/