欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

氮硫共掺杂多孔碳材料的制备及其在锂硫电池中的应用

  • 赵桂香 ,
  • Wail Hafiz Zaki Ahmed ,
  • 朱福良
展开
  • 1.兰州理工大学材料科学与工程学院,甘肃 兰州 730050
    2.有色金属先进加工与再利用国家重点实验室,甘肃 兰州 730050
* Tel: (86-931)2973942, E-mail: chzfl@126.com

收稿日期: 2020-12-10

  修回日期: 2021-02-02

  网络出版日期: 2021-02-18

基金资助

国家自然科学基金项目(52064035);甘肃省自然科学基金(20JR10RA166)

Nitrogen-Sulfur Co-Doped Porous Carbon Preparation and Its Application in Lithium-Sulfur Batteries

  • Gui-Xiang Zhao ,
  • Wail Hafiz Zaki Ahmed ,
  • Fu-Liang Zhu
Expand
  • 1. School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    2. State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals,Lanzhou 730050, Gansu, China

Received date: 2020-12-10

  Revised date: 2021-02-02

  Online published: 2021-02-18

摘要

锂硫电池因其较高的理论容量和对环境友好等优势被视为极具发展潜力的储能装置,但是多硫化物的穿梭效应极大地限制了锂硫电池的实际应用。本文以葡萄糖为碳源,离子液体为氮源和硫源,KCl和ZnCl2为模板剂,KOH为活化剂,通过热解工艺合成了氮硫共掺杂多孔碳(NSPC)。XPS和极性吸附实验表明N、S杂原子成功引入并且提高了碳材料对多硫化物的吸附能力,有效缓解多硫化物的穿梭效应,而较高的比表面积(1290.67 m2·g-1)有助于提高硫负载量。负载70.1wt.%的硫后(S@NSPC)作为锂硫电池的正极材料表现出了良好的电化学性能。在167.5 mA·g-1的电流密度下S@NSPC的首次放电容量为1229.2 mAh·g-1,远高于S@PC的861.6 mAh·g-1,且S@NSPC循环500圈后容量为328.1 mAh·g-1。当电流密度从3350 mA·g-1恢复至167.5 mA·g-1时,可逆容量达到首圈放电比容量的80%,几乎恢复至其初始值。

本文引用格式

赵桂香 , Wail Hafiz Zaki Ahmed , 朱福良 . 氮硫共掺杂多孔碳材料的制备及其在锂硫电池中的应用[J]. 电化学, 2021 , 27(6) : 614 -623 . DOI: 10.13208/j.electrochem.201210

Abstract

In recent years, lithium-sulfur (Li-S) batteries have been considered as a promising candidate for the next generation of energy storage system due to their ultrahigh theoretical capacity (1675 mAh·g-1) and energy density (2600 Wh·kg-1). However, the practical application of Li-S batteries is seriously limited by their insulating nature of sulfur, the shuttle effect of polysulfides (LiPSs), and volume expansion during charging and discharging. To overcome those disadvantages, one of the commonly methods is to infiltrate sulfur into porous conductive carbon framework, such as porous carbon, hollow carbon spheres, graphene, carbon nanotubes and some composites of the above structures to achieve the purpose of physically limiting the shuttle effect of polysulfides, thereby improving the performance of Li-S batteries. However, due to the nonpolarity of traditional carbon materials, the interaction with polar polysulfides is very weak, which cannot effectively inhibit the shuttle effect of polysulfides. Previous studies have shown that introducing heteroatom (N, S, P, B, etc.) doping into carbon matrix is a feasible method to adjust the nonpolarity of carbon materials. It is reported that the introduction of N atoms is conducive to improving the electrochemical activity. The Li-N bond formed by the interaction between N and Li+ can anchor polysulfides, effectively inhibit the dissolution of polysulfides and improve the utilization rate of sulfur. The introduction of nitrogen and sulfur heteroatoms can increase polar sites and active centers, thus, enhancing the adsorption capacity of carbon materials for polysulfides and capturing polysulfides. Therefore, ionic liquids are selected as nitrogen and sulfur sources to improve the polarity of carbon materials. In this paper, nitrogen and sulfur co-doped porous carbon (NSPC) was synthesized by using glucose as carbon source, KCl and ZnCl2 as templates, KOH as activator and ionic liquid as heteroatom source. XPS and adsorption experiments show that nitrogen and sulfur heteroatoms had been successfully introduced into NSPC, which improved the adsorption capacity of carbon materials for polysulfides, effectively alleviated the shuttle effect of polysulfides. The higher specific surface area (1290.67 m2·g-1) could help to improve the sulfur loading. After loading 70.1wt.% sulfur into NSPC (S@NSPC) and tested as a cathode material of Li-S battery, the initial discharge capacity was 1229.2 mAh·g-1 at 167.5 mA·g-1, higher than the 861.6 mAh·g-1 of S@PC, and the capacity remained at 328.1 mAh·g-1 after 500 cycles. When the current density returned to 167.5 mA·g-1, the reversible capacity almost went back to its initial value, which was 80% of its initial value. The good performance was mainly ascribed to both the porous structure and N, S co-dopants, which provided physical blocks and chemical affinity, respectively, for the efficient immobilization of intermediate lithium polysulfides. The results would provide an effective example in the surface chemistry and sulfur host materials design for high performance Li-S batteries.

参考文献

[1] Rehman S, Gu X X, Khan K, Mahmood N, Yang W L, Huang X X, Guo S, Hou Y L. 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium-sulfur batteries[J]. Adv. Energy Mater., 2016, 6(12): 1502518.
[2] Yang W W, Xiao J W, Ma Y, Cui S Q, Zhang P, Zhai P B, Meng L J, Wang X G, Wei Y, Du Z G, Li B X, Sun Z B, Yang S B, Zhang Q F, Gong Y J. Tin intercalated ultrathin MoO3 nanoribbons for advanced lithium-sulfur batteries[J]. Adv. Energy Mater., 2019, 9(7): 1803137.
[3] Yu M P, Ma J S, Xie M, Song H Q, Tian F Y, Xu S S, Zhou Y, Li B, Wu D, Qiu H, Wang R M. Freestanding and sandwich-structured electrode material with high areal mass loading for long-life lithium-sulfur batteries[J]. Adv. Energy Mater., 2017, 7(11): 1602347.
[4] Chen S X, Luo J H, Li N Y, Han X X, Wang J, Deng Q, Zeng Z L, Deng S G. Multifunctional LDH/Co9S8 hetero-structure nanocages as high-performance lithium-sulfur battery cathodes with ultralong lifespan[J]. Energy Stor. Mater., 2020, 30: 187-195.
[5] Guo D Y, Wei H F, Chen X A, Liu M L, Ding F, Yang Z, Yang Y, Wang S, Yang K Q, Huang S M. 3D hierarchical nitrogen-doped carbon nanoflower derived from chitosan for efficient electrocatalytic oxygen reduction and high performance lithium-sulfur batteries[J]. J. Mater. Chem. A, 2017, 5(34): 18193-18206
[6] Cheng X B, Huang J Q, Zhang Q, Peng H J, Zhao M Q, Wei F. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries[J]. Nano Energy, 2014, 4: 65-72.
[7] Chen M F, Jiang S X, Huang C, Wang X Y, Cai S Y, Xiang K X, Zhang Y P, Xue J X. Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon for lithium-sulfur batteries[J]. ChemSusChem, 2017, 10(8): 1803-1812.
[8] Gan R Y, Yang N, Dong Q, Fu N, Wu R, Li C P, Liao Q, Li J, Wei Z D. Enveloping ultrathin Ti3C2 nanosheets on carbon fibers: a high-density sulfur loaded lithium-sulfur battery cathode with remarkable cycling stability[J]. J. Mater. Chem. A, 2020, 8(15): 7253-7260.
[9] Chae C, Kim J, Kim J Y, Ji S, Lee S S, Kang Y, Choi Y, Suk J, Jeong S. Room-temperature, ambient-pressure chemical synjournal of amine-functionalized hierarchical carbon-sulfur composites for lithium-sulfur battery cathodes[J]. ACS Appl. Mater. Inter., 2018, 10(5): 4767-4775.
[10] ZhangY J, Liu X L, Wu L, Dong W D, Xia F J, Chen L D, Zhou N, Xia L X, Hu Z Y, Liu J, Mohamed H S H, Yu Li, Zhao Y, Chen Li H, Su B L. Flexible hierarchically PANI/MnO2 porous network with fast channels and extraordinary chemical process for stable fastcharging lithium-sulfur battery[J]. J. Mater. Chem. A, 2020, 8: 2741-2751.
[11] Abualela S M, Lü X X, Hu Y, Abd-Alla, M D. NiO nano-sheets grown on carbon cloth as mesoporous cathode for High-performance lithium-sulfur battery[J]. Mater. Lett., 2020, 268: 127622.
[12] Yu F Q, Zhou H, Shen Q. Modification of cobalt-containing MOF-derived mesoporous carbon as an effective sulfur-loading host for rechargeable lithium-sulfur batteries[J]. J. Alloys Compd., 2019, 772: 843-851.
[13] Chen T, Cheng B R, Zhu G Y, Chen R P, Hu Y, Ma L B, Lü H L, Wang Y R, Liang J, Tie Z X, Jin Z, Liu J. Highly efficient retention of polysulfides in “sea urchin”-like carbon nanotube/nanopolyhedra superstructures as cathode material for ultralong-life lithium-sulfur batteries[J]. Nano Lett., 2016, 17(1): 437-444.
[14] Hu K, Wen J, Yan W Q, Zhu Y S, Zhang Y, Yu N F, Wu Y P. A three-dimensional interconnected nitrogen-doped graphene-like porous carbon-modified separator for high-performance Li-S batteries[J]. Sustain. Energy Fuels, 2020, 4(8): 4264-4272.
[15] Wu K(吴凯). Preparation and process optimization of cathode materials for lithium-sulfur batteries[J]. J. Electrochem.(电化学), 2020, 26(6): 825-833.
[16] Cui Z, He S A, Liu Q, Zou R J. Multifunctional NiCo2O4 nanosheet-assembled hollow nanoflowers as a highly eff-icient sulfur host for lithium-sulfur batteries[J]. Dalton Trans., 2020, 49(20): 6876-6883.
[17] Wang C G, Song H W, Yu C C, Ullah Z, Guan Z X, Chu R R, Zhang Y F, Zhao L Y, Li Q, Liu L W. Iron single atom catalyst anchored on nitrogen-rich MOF derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries[J]. J. Mater. Chem. A, 2020, 8(6): 3421-3430.
[18] Du Z Z, Chen X J, Hu W, Chuang C H, Xie S, Hu A J, Yan W S, Kong X H, Wu X J, Ji H X, Wan L J. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2019, 141(9): 3977-3985.
[19] Li Z, Yan J, Yuan L X, Yi Z Q, Wu C, Liu Y, Strasser P, Huang Y H. A Highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries[J]. ACS Nano, 2014, 8(9): 9295-9303.
[20] Liu Y Z, Li G R, Chen Z W, Peng X S. CNT-threaded N-doped porous carbon film as binder-free electrode for high-capacity supercapacitor and Li-S battery[J]. J. Mater. Chem. A, 2017, 5(20): 9775-9784.
[21] Lei T Y, Chen W, Huang J W, Yan C Y, Sun H X, Wang C, Zhang W L, Li Y R, Xiong J. Multi-Functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries[J]. Adv. Energy Mater., 2017, 7(4): 1601843.
[22] Xu W, Pang H M, Zhou H L, Jian Z X, Hu R M, Xing Y L, Zhang S C. Lychee-like TiO2@TiN dual-function com-posite material for lithium-sulfur batteries[J]. RSC Adv., 2020, 10(5): 2670-2676.
[23] Feng X H, Wang Q, Li R R, Li H. CoFe2O4 coated carbon fiber paper fabricated via a spray pyrolysis method for trapping lithium polysulfide in Li-S batteries[J]. Appl. Surf. Sci., 2019, 478: 341-346.
[24] Shi J N, Kang Q, Mi Y, Xiao Q Q. Nitrogen-doped hollow porous carbon nanotubes for high-sulfur loading Li-S batteries[J]. Electrochim. Acta, 2019, 19: 31720-31727.
[25] Liu J T, Xiao S H, Zhang Z Y, Chen Y, Xiang Y, Liu X Q, Chen J S, Chen P. Naturally derived honeycomb-like N,S-codoped hierarchical porous carbon with MS2 (M = Co, Ni) decoration for high-performance Li-S battery[J]. Nanoscale, 2020, 12(8): 5114-5124.
[26] Cai D, Liu B K, Zhu D H, Chen D, Lu M J, Cao J M, Wang Y H, Huang W H, Shao Y, Tu H R, Han W. Ultrafine Co3Se4 nanoparticles in nitrogen-doped 3D carbon matrix for high-stable and long-cycle-life lithium sulfur batteries[J]. Adv. Energy Mater., 2020, 10(19): 1904273.
[27] Huang M, Yang J Y, Xi B J, Mi K, Feng Z Y, Liu J, Feng J K, Qian Y T, Xiong S L. Enhancing kinetics of Li-S batteries by graphene-like N,S-codoped biochar fabricated in NaCl non-aqueous ionic liquid[J]. Sci. China Mater., 2018, 62(4): 455-464.
[28] Li N, Chen K H, Chen S Y, Wang F, Wang D D, Gan F Y, He X, Huang Y C. Manipulating the redox kinetics of Li-S chemistry by porous hollow cobalt - B, N codoped-graphitic carbon polyhedrons for high performance lithium-sulfur batteries[J]. Carbon, 2019, 149: 564-571.
[29] Li J R, Zhou J, Wang T, Chen X, Zhang Y X, Wan Q, Zhu J. Covalent sulfur embedding in inherent N,P co-doped biological carbon for ultrastable and high rate lithium-sulfur batteries[J]. Nanoscale, 2020, 12(16): 8991-8996.
[30] Hu C J, Chang Y N, Chen R D, Yang J J, Xie T H, Chang Z, Zhang G X, Liu W, Sun X M. Polyvinylchloride-derived N, S co-doped carbon as an efficient sulfur host for high-performance Li-S batteries[J]. RSC Adv., 2018, 8(66): 37811-37816.
[31] Jiao S, Ding T Y, Zhai R, Wu Y P, Chen S, Wei W. Effective accommodation and conversion of polysulfides using organic-inorganic hybrid frameworks for long-life lithium-sulfur batteries[J]. Nanoscale, 2020, 12(25): 13377-13387.
[32] Gu W T, Sevilla M, Magasinski A, Fuertes A B, Yushin G. Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection[J]. Energy Environ. Sci., 2013, 6(8): 2465-2476.
[33] Du M Q, Meng Y S, Duan C Y, Wang C, Zhu F L, Zhang Y. Nitrogen-sulfur co-doped porous carbon prepared using ionic liquids as a dual heteroatom source and their application for Li-ion batteries[J]. J. Mater. Sci. - Mater. Electron., 2018, 29(21): 18179-18186.
[34] Zhang H, Zhao W Q, Zou M C, Wang Y S, Chen Y J, Xu L, Wu H S, Cao A Y. 3D, Mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries[J]. Adv. Energy Mater., 2018, 8(19): 1800013.
[35] Zeng L C, Pan F S, Li W H, Jiang Y, Zhong X W, Yu Y. Free-standing porous carbon nanofibers-sulfur composite for flexible Li-S battery cathode[J]. Nanoscale, 2014, 6(16): 9579-9607.
[36] Zhang Q F, Qiao Z S, Cao X R, Qu B H, Yuan J, Fan T E, Zheng H F, Cui J Q, Wu S Q, Xie Q S, Peng D L. Rational integration of spatial confinement and polysulfide conversion catalysts for high sulfur loading lithium-sulfur batteries[J]. Nanoscale Horiz., 2020, 5(4): 720-729.
[37] Jin J, Cai W L, Cai J S, Shao Y L, Song Y Z, Xia Z, Zhang Q, Sun J Y. MOF-derived hierarchical CoP nanoflakes anchored on vertically erected graphene scaffolds as self-supported and flexible hosts for lithium-sulfur batteries[J]. J. Mater. Chem. A, 2020, 8(6): 3027-3034.
[38] Meng Q H(孟全华), Deng W W(邓雯雯), Li C M(李长明). Facile synjournal of nitrogen-doped graphene-like active carbon materials for high performance lithium-sulfur battery[J]. J. Electrochem(电化学), 2020, 26(5): 740-749.
[39] Liu J P, Li Z, Jia B B, Zhu J C, Zhu W L, Li J P, Pan H, Zheng B W, Chen L Y, Pezzotti G, Zhu J L. A freestanding hierarchically structured cathode enables high sulfur loading and energy density of flexible Li-S batteries[J]. J. Mater. Chem. A, 2020, 8(13): 6303-6310.
[40] Li S Q, Mou T, Ren G F, Warzywoda J, Wang B, Fan Z Y. Confining sulfur species in cathodes of lithium-sulfur batteries: insight into nonpolar and polar matrix surfaces[J]. ACS Energy Lett., 2016, 1(2): 481-489.
[41] Lee J Y, Park G D, Choia J H, Kang Y C. Structural combination of polar hollow microspheres and hierarchical N-doped carbon nanotubes for high-performance Li-S batteries[J]. Nanoscale, 2020, 12(3): 2142-2153.
文章导航

/