MXene-碳黑/硫复合材料在锂硫电池一体式电极的研究
收稿日期: 2020-12-30
修回日期: 2021-01-13
网络出版日期: 2021-01-25
基金资助
广西重点研发计划项目(AB16380030);广西创新驱动重大专项(AA17204083);国家自然科学基金-联合基金重点研发项目(U1705252)
Study on MXene-Carbon Black/Sulfur Composite in Integrated Electrode of Lithium-Sulfur Batteries
Received date: 2020-12-30
Revised date: 2021-01-13
Online published: 2021-01-25
锂硫电池的实际能量密度不高和多硫化物(LiPSs)的穿梭效应等问题严重影响了该电池的实际应用。本文通过将二维的Ti3C2Tx Mxene纳米片与碳黑/硫(CB/S)材料进行混合,制备了Ti3C2Tx-CB/S正极材料并将其涂覆在商业隔膜(PP)上,最终获得了Ti3C2Tx-CB/S-PP一体式电极并用于锂硫电池。利用Ti3C2Tx纳米片对CB/S进行修饰,不仅能提高活性物质硫的导电性,还能对扩散的LiPSs进行物理阻挡和化学吸附。而一体式电极的设计有利于提高电池的能量密度。恒流充放电测试结果表明,Ti3C2Tx-CB/S-PP电极在0.1 C电流下的初始放电容量为1028.8 mAh·g-1,高于不含Ti3C2Tx的CB/S-PP电极的896.8 mAh·g-1。Ti3C2Tx-CB/S-PP电极还展示出了比基于传统铝箔集流体的Ti3C2Tx-CB/S-Al电极更好的循环稳定性,前者在0.5 C下400圈长循环测试中的每圈衰减率为0.072%,而后者则为更高的0.10%。本文利用Ti3C2Tx-CB/S构建一体式电极的策略为实现高性能和高能量密度的锂硫电池提供了新的研究方向。
关键词: 锂硫电池; 一体式电极; 穿梭效应; Ti3C2Tx MXene
范业鹏 , 罗业强 , 沈培康 . MXene-碳黑/硫复合材料在锂硫电池一体式电极的研究[J]. 电化学, 2021 , 27(4) : 377 -387 . DOI: 10.13208/j.electrochem.201231
Lithium-sulfur (Li-S) batteries are considered as a promising energy storage device due to their ultrahigh theoretical energy density of 2500 Wh·kg-1 and low cost. However, the practical application of Li-S batteries is seriously limited by their low actual energy density, the shuttle effect of polysulfides (LiPSs), and the insulating nature of sulfur and lithium sulfides. Carbon materials have been developed in the design of sulfur hosts due to their adjustable pore structure and high electrical conductivity, but their non-polar surfaces have weak interactions with LiPSs. Herein, MXene-carbon black/sulfur (Ti3C2Tx-CB/S) composites were prepared and applied to the integrated electrodes of Li-S batteries. The CB/S was prepared via a melting-diffusion method and Ti3C2Tx MXene nanosheets were synthesized by etching Ti3AlC2 MAX with LiF/HCl. After mixing CB/S and Ti3C2Tx , Ti3C2Tx-CB/S cathode material was obtained and coated on commercial separator (PP) to prepare Ti3C2Tx-CB/S-PP integrated electrodes. On the one hand, the two-dimensional Ti3C2Tx nanosheets dispersed in the CB/S particles not only serve as multiple physical barriers to inhibit the diffusion of LiPSs, but also have strong chemical interactions with them, effectively alleviating the shuttle effect. Thus, Ti3C2Tx improves the conductivity of CB/S composite, which is beneficial to the reaction kinetics of the cathode. Furthermore, the design of Ti3C2Tx-CB/S-PP integrated electrode increases the energy density of Li-S batteries. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were employed to analyze the structures, morphologies, and surface chemical composition of the synthesized materials. The results of constant current charge/discharge tests showed that Ti3C2Tx-CB/S-PP electrode achieved superior rate performance and cycling performance than CB/S-PP electrode. The initial discharge capacity of Ti3C2Tx-CB/S-PP electrode at 0.1 C current was 1028.8 mAh·g-1, higher than 896.8 mAh·g-1 of CB/S-PP electrode. The cycling test at 0.2 C indicated that Ti3C2Tx-CB/S-PP maintained a discharge capacity of 726.4 mAh·g-1 after 80 cycles, better than CB/S-PP (529.2 mAh·g-1). Moreover, due to the improved utilization of the active material at the interface between the cathode and the separator, Ti3C2Tx-CB/S-PP electrode also showed better cycling stability compared to the Ti3C2Tx-CB/S-Al electrode based on the traditional aluminum foil current collector. The capacity degradation rate of Ti3C2Tx-CB/S-PP was only 0.072% per cycle in a long-term cycling test of 400 cycles at 0.5 C, while that of Ti3C2Tx-CB/S-Al was 0.10%. The strategy of using Ti3C2Tx-CB/S to construct an integrated electrode provides a new direction for Li-S batteries with high performance and high energy density.
[1] | Li R R, Zhou X J, Shen H J, Yang M H, Li C L. Conductive holey MoO2-Mo3N2 heterojunctions as Job-Synergistic cathode host with low surface area for high-loading Li-S batteries[J]. ACS Nano, 2019, 13(9): 10049-10061. |
[2] | Tang T Y, Hou Y L. Chemical confinement and utility of lithium polysulfides in lithium sulfur batteries[J]. Small Methods, 2019, 4(6): 1900001. |
[3] | Evers S, Nazar L F. New approaches for high energy density lithium-sulfur battery cathodes[J]. Acc. Chem. Res., 2013, 46(5): 1135-1143. |
[4] | Seh Z W, Sun Y W, Zhang Q F, Cui Y. Designing high-energy lithium-sulfur batteries[J]. Chem. Soc. Rev., 2016, 45(20): 5605-5634. |
[5] | Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Li-O2 and Li-S batteries with high energy storage[J]. Nat. Mater., 2012, 11(1): 19-29. |
[6] | Ma L, Hendrickson K E, Wei S, Archer L A. Nanomaterials: Science and applications in the lithium-sulfur battery[J]. Nano Today, 2015, 10(3): 315-338. |
[7] | Song Y Z, Sun Z T, Fan Z D, Cai W L, Shao Y L, Sheng G, Wang M L, Song L X, Liu Z F, Zhang Q, Sun J Y. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry[J]. Nano Energy, 2020, 70: 104555. |
[8] | Liu M, Zhou D, He Y B, Fu, Y Z, Qin X Y, Miao C, Du H D, Li B H, Yang Q H, Lin Z Q, Zhao T S, Kang F Y. Novel gel polymer electrolyte for high-performance lithium-sulfur batteries[J]. Nano Energy, 2016, 22: 278-289. |
[9] | Pang Y, Wei J S, Wang Y G, Xia Y Y. Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium-sulfur batteries[J]. Adv. Energy Mater., 2018, 8(10): 1702288. |
[10] | Huang S Z, Zhang L L, Wang J Y, Zhu J L, Shen P K. In situ carbon nanotube clusters grown from three-dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable Li-S batteries[J]. Nano Res., 2018, 11(3): 1731-1743. |
[11] | Salhabi E H M, Zhao J L, Wang J Y, Yang M, Wang B, Wang D. Hollow multi-shelled structural TiO2-x with multiple spatial confinement for long-life lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2019, 58(27): 9078-9082. |
[12] | Zhou J W, Li R, Fan X X, Chen Y F, Han R D, Li W, Zheng J, Wang B, Li X G. Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries[J]. Energy Environ. Sci., 2014, 7(8): 2715-2724. |
[13] | Zhou W D, Yu Y C, Chen H, DiSalvo F J, Abruna H D. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2013, 135(44): 16736-16743. |
[14] | Shang X N, Guo P Q, Qin T F, Liu M T, Lv M Z, Liu D Q, He D Y. Sulfur immobilizer by nanoscale TiO2 trapper deposited on hierarchical porous carbon and graphene for cathodes of lithium-sulfur batteries[J]. Adv. Mater. Interfaces., 2018, 5(7): 1701602. |
[15] | Zheng J M, Tian J, Wu D X, Gu M, Xu W, Wang C M, Gao F, Engelhard M H, Zhang J G, Liu J, Xiao J. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries[J]. Nano Letters., 2014, 14(5): 2345-2352. |
[16] | Zhong Y R, Yin L, He P, Liu W, Wu Z S, Wang H L. Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2018, 140(4): 1455-1459. |
[17] | Zhou G M, Pei S F, Li L, Wang D W, Wang S G, Huang K, Yin L C, Li F, Cheng H M. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries[J]. Adv. Mater., 2014, 26(4): 625-631. |
[18] | Liang X, Rangom Y, Kwok C Y, Pang Q, Nazar L F. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts[J]. Adv. Mater., 2017, 29(3): 1603040. |
[19] | Wang X W, Yang C H, Xiong X H, Chen G L, Huang M Z, Wang J H, Liu Y, Liu M L, Huang K. A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries[J]. Energy Storage Mater., 2019, 16: 344-353. |
[20] | Huang H S, Song Y, Li N J, Chen D Y, Xu Q F, Li H, He J H, Lu J M. One-step in-situ preparation of N-doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation[J]. Appl. Catal. B - Environ., 2019, 251: 154-161. |
[21] | Guo D, Ming F W, Su H, Wu Y Q, Wahyudi W, Li M L, Hedhili M N, Sheng G, Li L J, Alshareef H N, Li Y X, Lai Z P. MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li-S battery[J]. Nano Energy, 2019, 61: 478-485. |
[22] | Jiao L, Zhang C, Geng C N, Wu S C, Li H, Lv W, Tao Y, Chen Z J, Zhou G M, Li J, Ling G W, Wan Y, Yang Q H. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries[J]. Adv. Energy Mater., 2019, 9(19): 1900219. |
[23] | Li N, Xie Y, Peng S T, Xiong X, Han K. Ultra-lightweight Ti3C2Tx MXene modified separator for Li-S batteries: Thickness regulation enabled polysulfide inhibition and lithium ion transportation[J]. J. Energy Chem., 2020, 42: 116-125. |
[24] | Bao W Z, Tang X, Guo X, Choi S, Wang C Y, Gogotsi Y, Wang G X. Porous Cryo-dried MXene for efficient capacitive deionization[J]. Joule, 2018, 2(4): 778-787. |
[25] | Demir-Cakan R, Morcrette M, Gangulibabu, Gueguen A, Dedryvere R, Tarascon J M. Li-S batteries: simple approaches for superior performance[J]. Energy Environ. Sci., 2013, 6(1): 176-182. |
[26] | Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar L F. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nat. Commun., 2015, 6(1): 5682. |
[27] | Tao X Y, Wang J G, Ying Z G, Cai Q X, Zheng G Y, Gan Y P, Huang H, Xia Y, Liang C, Zhang W K, Cui Y. Strong sulfur binding with conducting magnéli-phase TinO2n-1 nanomaterials for improving lithium-sulfur batteries[J]. Nano Lett., 2014, 14(9): 5288-5294. |
[28] | Zha C Y, Yang F L, Zhang J J, Zhang T K, Dong S, Chen H Y. Promoting polysulfide redox reactions and improving electronic conductivity in lithium-sulfur batteries via hierarchical cathode materials of graphene-wrapped porous TiO2 microspheres with exposed (001) facets[J]. J. Mater. Chem. A, 2018, 6(34): 16574-16582. |
[29] | Hong X J, Song C L, Yang Y, Tan H C, Li G H, Cai Y P, Wang H X. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries[J]. ACS Nano, 2019, 13(2): 1923-1931. |
[30] | Liu Q, Zhang J H, He S A, Zou R J, Xu C T, Cui Z, Huang X J, Guan G Q, Zhang W L, Xu K B, Hu J Q. Stabilizing lithium-sulfur batteries through control of sulfur aggregation and polysulfide dissolution[J]. Small, 2018, 14(20): 1703816. |
[31] | Lin J H, Zhang K F, Zhu Z Q, Zhang R Z, Li N, Zhao C H. CoP/C nanocubes-modified separator suppressing polysulfide dissolution for high-rate and stable lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2020, 12(2): 2497-2504. |
/
〈 |
|
〉 |