纳米多孔阳极氧化铁膜的形成及其形貌演变
收稿日期: 2020-11-05
修回日期: 2020-12-30
网络出版日期: 2021-01-12
基金资助
国家重点研究发展计划(2017YFA0403804)
Formation and Morphological Evolution of Nanoporous Anodized Iron Oxide Films
Received date: 2020-11-05
Revised date: 2020-12-30
Online published: 2021-01-12
阳极氧化法制备具有纳米多孔结构的阳极氧化铁膜因其潜在的应用价值而倍受关注。然而,在阳极氧化过程中多孔结构的形成机制至今尚不清楚。本文结合电流密度-电位响应(I-V曲线)及法拉第定律的推导,分析了形成纳米多孔阳极氧化铁膜的过程中阳极电流的组成。结果表明,离子电流(导致离子迁移形成氧化物)和电子电流(导致析出氧气)共同组成阳极电流,并且纳米多孔阳极氧化铁膜的形成与两种电流的占比相关。分段式氧化物之间的空腔以及在阳极氧化初期纳米孔道上覆盖的致密膜,表明氧气泡可能是从氧化膜内部析出。此时,阳离子和阴离子绕过作为模具的氧气泡实现传质,最终导致纳米多孔结构的形成。此外,在阳极氧化铁膜形貌演变过程中,氧气泡不断向外溢出会使表面氧化物被冲破,导致表面孔径不断增大。
曹锦伟 , 高楠 , 高朝卿 , 王晨 , 尚胜艳 , 王云鹏 , 马海涛 . 纳米多孔阳极氧化铁膜的形成及其形貌演变[J]. 电化学, 2021 , 27(6) : 637 -645 . DOI: 10.13208/j.electrochem.201102
The preparation of iron oxide films with nanoporous structure by anodization has attracted much attention for its potential applications. However, the formation mechanism of porous structure during anodization is still unclear. In this paper, the composition of anodic current during the formation of nanoporous anodized iron oxide film was analyzed in combination with the current density-potential response (I-V curve) and the derivation of Faraday’s law. The results showed that the anodic current consisted of an ionic current (leading to the migration of ions to form oxide) and an electronic current (leading to the oxygen evolution), and the formation of the nanoporous anodized iron oxide film was correlated with the ratio of the two currents. Only when the potential was higher than a certain critical potential (20 V under the present experimental conditions), the ionic current to electronic current could maintain a proper ratio, and the precipitated oxygen promoted the formation of nanoporous structures. Otherwise, the anodized iron oxide film existed in the form of an irregular loose layer or a dense layer. However, at relatively high potential of anodization (e.g. 50 V in this experiment), the electronic current might accounted for a large proportion of the total current, which was not conducive to the increase of nanoporous anodized iron oxide film thickness. In addition, the dense film covered on the nanopore channels at the initial stage of anodization, as well as the cavities between segmented oxides, indicated the possible evolution of oxygen bubbles inside the oxide film. And the cations and anions achieved mass transfer around the oxygen bubbles, leading to the formation of the nanoporous anodized iron oxide film. Further, during the morphologic evolution of the anodized iron oxide film, the pore size of the surface increased with the time of anodization, which may be related to the dissolution of the oxide on the surface by prolonged erosion in the electrolyte and the continuous outward spillage of oxygen bubbles punched out the surface oxide.
Key words: nanoporous; iron oxide; anodization; critical potential; oxygen bubbles
[1] | Cesar I, Kay A, Martinez J A, Gratzel M. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping[J]. J. Am. Chem. Soc., 2006, 128(14): 4582-4583. |
[2] | Saha S, Kumar J S, Murmu N C, Samanta P, Kuila T. Con-trolled electrodeposition of iron oxide/nickel oxide@Ni for the investigation of the effects of stoichiometry and particle size on energy storage and water splitting applications[J]. J. Mater. Chem. A, 2018, 6(20): 9657-9664. |
[3] | Wang Y(王尧), Wei Z D(魏子栋). Recent process in transition-metal-oxide based catalysts for oxygen reduction reaction[J]. J. Electrochem.(电化学), 2018, 24(5): 427-443. |
[4] | An K, Kwon S G, Park M, Na H B, Baik S I, Yu J H, Kim D, Son J S, Kim Y W, Song I C, Moon W K, Park H M, Hyeon T. Synjournal of uniform hollow oxide nanoparticles through nanoscale acid etching[J]. Nano Lett., 2008, 8(12): 4252-4258. |
[5] | Prakasam H E, Varghese O K, Paulose M, Mor G K, Grimes C A. Synjournal and photoelectrochemical properties of nano-porous iron(III) oxide by potentiostatic anodization[J]. Nano-technology, 2006, 17(17): 4285-4291. |
[6] | Azevedo J, Fernandez-Garcia M P, Magen C, Mendes A, Araujo J P, Sousa C T. Double-walled iron oxide nanotubes via selective chemical etching and Kirkendall process[J]. Sci. Rep., 2019, 9: 11994. |
[7] | Jia C J, Sun L D, Yan Z G, You L P, Luo F, Han X D, Pang Y C, Zhang Z, Yan C H. Single-crystalline iron oxide nanotubes[J]. Angew. Chem. Int. Ed., 2005, 44(28): 4328-4333. |
[8] | Kleinfeldt L, Gädke J, Biedendieck R, Krull R, Garnweitner, G. Spray-dried hierarchical aggregates of iron oxide nanoparticles and their functionalization for downstream processing in biotechnology[J]. ACS Omega, 2019, 4(15): 16300-16308. |
[9] | Zhang T, Ling Z. Template-assisted fabrication of Ni nano-wire arrays for high efficient oxygen evolution reaction[J]. Electrochim. Acta, 2019, 318: 91-99. |
[10] | Zhang C, Li L Y, Tuan C C, Zhou J, Xue F, Wong C P. A high-performance TiO2 nanotube supercapacitor by tuning heating rate during H2 thermal annealing[J]. J. Mater. Sci. Mater. Electron., 2018, 29(17): 15130-15137. |
[11] | Zhu X F(朱绪飞), Han H(韩华), Song Y(宋晔), Duan W Q(段文强). Research progress in formation mechanism of TiO2 nanotubes and nanopores in porous anodic oxide[J]. Acta Phys. - Chim. Sin.(物理化学学报), 2012, 28: 1291-1305. |
[12] | Lian S T(廉思甜), Lv J S(吕建帅), Yu Q(于强), Hu G W(胡光武), Chen Z(陈卓), Zhou L(周亮), Mai L Q(麦立强). Recent progress on TiO2-based anode materials for sodium-ion batteries[J]. J. Electrochem.(电化学), 2019, 25(1): 31-44. |
[13] | Ban D L(班达里), La S N(拉克什马南). The field water flushing voltage recovery and pollutant removal. China, CN 109860636A[P]. 2012. 10.17. |
[14] | Gong C(弓程), Zhang Z Y(张泽阳), Xiang S W(向思弯), Sun L(孙岚), Ye C Q(叶陈清), Lin C J(林昌健). Electrochemical preparation and photocatalytic performance of LaNiO3/TiO2 nanotube arrays[J]. J. Electrochem.(电化学), 2019, 25(6): 682-689. |
[15] | Jiang W J, Zeng W Y, Ma Z S, Pan Y, Lin J G, Lu C S. Advanced amorphous nanoporous stannous oxide composite with carbon nanotubes as anode materials for lithium-ion batteries[J]. RSC Adv., 2014, 4(78): 41281-41286. |
[16] | Konno Y, Tsuji E, Skeldon P, Thompson G E, Habazaki H. Factors influencing the growth behaviour of nanoporous anodic films on iron under galvanostatic anodizing[J]. J. Solid State Electro., 2012, 16(12): 3887-3896. |
[17] | Albu S P, Ghicov A, Schmuki P. High aspect ratio, self-ordered iron oxide nanopores formed by anodization of Fe in ethylene glycol/NH4F electrolytes[J]. Phys. Status Solidi-R., 2010, 3(2-3): 64-66. |
[18] | Choi Y W, Shin S, Park D W, Choi J. Surface treatment of iron by electrochemical oxidation and subsequent annealing for the improvement of anti-corrosive properties[J]. Curr. Appl. Phys., 2014, 14(5): 641-648. |
[19] | Rozana M, Razak K A, Yew C K, Lockman Z, Kawamura G, Matsuda A. Annealing temperature-dependent crystallinity and photocurrent response of anodic nanoporous iron oxide film[J]. J. Mater. Res., 2016, 31(12): 1681-1690. |
[20] | Rangaraju R R, Panday A, Raja K S, Misra M. Nanostructured anodic iron oxide film as photoanode for water oxidation[J]. J. Phys. D Appl. Phys., 2009, 42(13): 135303. |
[21] | Zhang Z, Hossain M F, Takahashi T. Self-assembled hematite (α-Fe2O3) nanotube arrays for photoelectrocata-lytic degradation of azo dye under simulated solar light irradiation[J]. Appl. Catal. B - Environ., 2010, 95: 423-429. |
[22] | Pawlik A, Hnida K, Socha R P, Wiercigroch E, Malek K, Sulka G D. Effects of anodizing conditions and annealing temperature on the morphology and crystalline structure of anodic oxide layers grown on iron[J]. Appl. Surf. Sci., 2017, 426(31): 1084-1093. |
[23] | Xie K Y, Li J, Lai Y Q, Lu W, Zhang Z A, Liu Y X, Zhou L M, Huang H T. Highly ordered iron oxide nano-tube arrays as electrodes for electrochemical energy storage[J]. Electrochem. Commun., 2011, 13(6): 657-660. |
[24] | Yu M S, Cui H M, Ai F P, Jiang L F, Kong J S, Zhu X F. Terminated nanotubes: Evidence against the dissolution equilibrium theory[J]. Electrochem. Commun., 2017, 86: 80-84. |
[25] | Yu M S, Li C, Yang Y B, Xu S K, Zhang K, Cui H M, Zhu X F. Cavities between the double walls of nanotubes: Evidence of oxygen evolution beneath an anion-contaminated layer[J]. Electrochem. Commun., 2018, 90: 34-38. |
[26] | Yu M S, Chen Y, Li C, Yan S, Cui H M, Zhu X F, Kong J S. Studies of oxide growth location on anodization of Al and Ti provide evidence against the field-assisted dissolution and field-assisted ejection theories[J]. Electrochem. Commun., 2018, 87: 76-80. |
[27] | Zhao S W, Wu L Z, Li C, Li C Y, Yu M S, Cui H M, Zhu X F. Fabrication and growth model for conical alumina nanopores - evidence against field-assisted dissolution theory[J]. Electrochem. Commun., 2018, 93: 25-30. |
[28] | Zhang J J, Huang W Q, Zhang K, Li D Z, Xu H Q, Zhu X F. Bamboo shoot nanotubes with diameters increasing from top to bottom: Evidence against the field-assisted dissolution equilibrium theory[J]. Electrochem. Commun., 2019, 100: 48-51. |
[29] | Zhang K, Cao S K, Li C, Qi J R, Jiang L F, Zhang J J, Zhu X F. Rapid growth of TiO2 nanotubes under the compact oxide layer: Evidence against the digging manner of dissolution reaction[J]. Electrochem. Commun., 2019, 103: 88-93. |
[30] | Zhou Q Y, Tian M M, Ying Z R, Dan Y X, Tang F R, Zhang J P, Zhu J W, Zhu X F. Dense films formed during Ti anodization in NH4F electrolyte: evidence against the feld-assisted dissolution reactions of fluoride ions[J]. Ele-ctrochem. Commun., 2020, 111: 106663. |
[31] | Garcia-Vergara S J, Habazaki H, Skeldon P, Thompson G E. Tracer studies relating to alloying element behaviour in porous anodic alumina formed in phosphoric acid[J]. Electrochim. Acta, 2010, 55(9): 175-3184. |
[32] | Garcia-Vergara S J, Skeleton P, Thompson G E, Habakaki H. Tracer studies of anodic films formed on aluminium in malonic and oxalic acids[J]. Appl. Surf. Sci., 2007, 254(5): 1534-1542. |
[33] | Zhou Q Y, Niu D M, Feng X J, Wang A C, Ying Z R, Zhang J P, Lu N, Zhu J W, Zhu X F. Debunking the effect of water content on anodizing current: Evidence against the traditional dissolution theory[J]. Electrochem. Commun., 2020, 119: 106815. |
[34] | Curioni M, Skeldon P, Thompson G E. Anodizing of aluminum under nonsteady conditions[J]. J. Electro-chem. Soc., 2009, 156(12): C407-C413. |
[35] | Di Franco F, Zampardi G, Santamaria M, Di Quarto F, Habazaki H. II Characterization of the solid state properties of anodic oxides on magnetron sputtered Ta, Nb and Ta-Nb alloys[J]. J. Electrochem. Soc., 2011, 159(1): C33-C39. |
[36] | Santamaria M, Quarto F D, Zanna S, Marcus P. The influence of surface treatment on the anodizing of magnesium in alkaline solution[J]. Electrochim. Acta, 2011, 56(28): 10533-10542. |
[37] | Zhang Z Y, Wang Q, Xu H Q, Zhang W C, Zhou Q Y, Zeng H P, Yang J L, Zhu J W, Zhu X F. TiO2 nanotubes arrays with a volume expansion factor greater than 2.0: Evidence against the field-assisted ejection theory[J]. Ele-ctrochem. Commun., 2020, 114: 106717. |
[38] | Oh J, Thompson C V. The role of electric field in pore formation during aluminum anodization[J]. Electrochim. Acta, 2011, 56(11): 4044-4051. |
[39] | Zhu X F, Liu L, Song Y, Jia H B, Yu H D, Xiao X M, Yang X L. Oxygen bubble mould effect: serrated nano-pore formation and porous alumina growth[J]. Monatsh. Chem., 2008, 139(9): 999-1003. |
[40] | Lee W, Park S J. Porous anodic aluminum oxide: anodization and templated synjournal of functional nanostructures[J]. Chem. Rev., 2014, 114(15): 7487-7556. |
[41] | Cao J W, Gao Z Q, Wang C, Muzammal H M, Wang W Q, Gu Q D, Dong C, Ma H T, Wang Y P. Morphology evolution of the anodized tin oxide film during early formation stages at relatively high constant potential[J]. Surf. Coat. Tech., 2020, 388: 125592. |
/
〈 |
|
〉 |