欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

PEMFC阴极催化层结构分析

  • 王睿卿 ,
  • 隋升
展开
  • 上海交通大学燃料电池研究所,上海 200240
* Tel: (86)13801692612, E-mail: ssui@sjtu.edu.cn

收稿日期: 2020-12-08

  修回日期: 2020-12-29

  网络出版日期: 2021-01-11

基金资助

国家自然科学基金项目(21576164)

Structure Analysis of PEMFC Cathode Catalyst Layer

  • Rui-Qing Wang ,
  • Sheng Sui
Expand
  • Fuel Cell Institute, School of Mechanical and Power Engineering, Shanghai Jiaotong University, Shanghai 200240, China

Received date: 2020-12-08

  Revised date: 2020-12-29

  Online published: 2021-01-11

摘要

采用CCS法(catalyst coated substrate)构建铂纳米颗粒(Pt-NPs)和铂纳米线(Pt-NWs)双层催化层结构,分析其对单电池电化学性能的影响。对于富铂/贫铂双层铂纳米颗粒结构,靠近质子交换膜侧的富铂层中致密的铂颗粒结构能促进ORR速率,而靠近气体扩散层一侧的具有更高的孔隙率和平均孔尺寸的贫铂层,有利于反应气体的传输和扩散,当贫富铂层铂载量比为1:2时,单电池测试表现出最优性能,在0.6 V时的电流密度达到了1.05 A·cm-2,峰值功率密度为0.69 W·cm-2,较常规单层催化层结构提升了21%。在以Pt-NPs作为基底层时生长Pt-NWs时,得到了梯度分布的双层结构。铂颗粒的存在促进了铂前驱体的还原,并为新形成的铂原子提供了沉积位置。在Pt-NPs基底上生长的Pt-NWs具有更均匀的分布以及更致密的绒毛结构,并且自然形成了一种梯度分布。优化后的Pt-NWs催化层在0.6 V时的电流密度提高了21%。含有双层催化层结构的膜电极具有更高的催化剂利用率,对阴极催化层结构的优化和制备提供了新思路。

本文引用格式

王睿卿 , 隋升 . PEMFC阴极催化层结构分析[J]. 电化学, 2021 , 27(6) : 595 -604 . DOI: 10.13208/j.electrochem.201208

Abstract

The sluggish oxygen reduction reaction (ORR) on the cathode of the proton exchange membrane fuel cell (PEMFC) has always been one of the key factors limiting its commercialization. The optimization of the cathode catalytic layer structure plays an important role in improving fuel cell performance and reducing production costs. In this paper, two different catalysts (platinum nanoparticles (Pt-NPs) and platinum nanowires (Pt-NWs)) were prepared by using catalyst coated substrate (CCS) method. By constructing a double-layer catalytic layer structure, we analyzed the effect of different catalytic layer structures by performing a single cell test. The results showed that the dense platinum particle structure in the Pt-rich layer near the proton exchange membrane could promote the ORR rate, while the Pt-poor layer near the gas diffusion layer had higher porosity and average pore size, which is beneficial to the reaction gas transmission and diffusion. When the platinum loading ratio of the rich to poor platinum layer was 1:2, the best single cell performance was achieved. The current density at 0.6 V reached 1.05A·cm-2, and the maximum power density was 0.69 W·cm-2. Compared with the single-layer structure, the peak power density was increased by 21%. When growing Pt-NWs on the Pt-NPs base layer, the presence of Pt particles promoted the reduction of platinum precursors and provided deposition sites for newly formed Pt atoms, and the grown Pt-NWs had a more uniform distribution as well as a denser pile structure. The current density of the optimized Pt-NWs catalytic layer structure at 0.6 V increased by 21%. The MEA fabricated by double-catalytic layer method had a higher catalyst utilization rate and a guiding significance for the optimization of the cathode catalytic layer structure. The high activity shown by the platinum nanowires provides a new idea for the preparation of efficient catalysts.

参考文献

[1] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
[2] Wang G J, Yu Y, Liu H, Gong C L, Wen S, Wang X H, Tu Z K. Progress on design and development of polymer electrolyte membrane fuel cell systems for vehicle applications: A review[J]. Fuel Process. Technol., 2018, 179: 203-228.
[3] Bao B(鲍冰), Liu F(刘锋), Duan X(段骁). Review on progress of membrane electrode assembly in proton-exchange membrane fuel cells[J]. Precious Me.(贵金属), 2019, 40(2): 73-82.
[4] Prasanna M, Cho E A, Lim T H, Oh I H. Effects of MEA fabrication method on durability of polymer electrolyte membrane fuel cells[J]. Electrochim. Acta, 2008, 53(16): 5434-5441.
[5] Alaefour I E, Li X G, Hamdullahpur F. Effect of catalyst deposition on electrode structure, mass transport and performance of polymer electrolyte membrane fuel cells[J]. Appl. Energy, 2019, 255: 113802.
[6] Hwang D S, Park C H, Yi S C, Lee Y M. Optimal catalyst layer structure of polymer electrolyte membrane fuel cell[J]. Int. J. Hydrog. Energy, 2011, 36(16): 9876-9885.
[7] Gao Y Y(高燕燕), Hou M(侯明), Jiang Y Y(姜永燚), Liang D(梁栋), Ai J(艾军), Zheng L M(郑利民). Chemical stability investigations of catalyst layer in PEMFC[J]. J. Electrochem.(电化学), 2018, 24(3): 227-234.
[8] Rao R M, Rengaswamy R. Optimization study of an agglomerate model for platinum reduction and performance in PEM fuel cell cathode[J]. Chem. Eng. Res. Des., 2006, 84(10): 952-964.
[9] Secanell M, Karan K, Suleman A, Djilali N. Multi-variable optimization of PEMFC cathodes using an agglomerate model[J]. Electrochim. Acta, 2007, 52(22): 6318-6337.
[10] Du C Y(杜春雨), Cheng X Q(程新群), Yin G P(尹鸽平). Influence of structural parameters on ordered cathode catalyst layer in proton exchange membrane fuel cells[J]. CIESC Journal(化工学报), 2007, 58(1): 212-216.
[11] Zheng J S, Dai N N, Zhu S Y, Gao Y, Ye L C, Ma J X, Zheng J P. Membrane electrode assembly based on buckypaper with gradient distribution of platinum, proton conductor and electrode porosity[J]. J. Alloy. Compd., 2018, 769: 471-477.
[12] Ye L C, Gao Y, Zhu S Y, Zheng J S, Li P, Zheng J P. A Pt content and pore structure gradient distributed catalyst layer to improve the PEMFC performance[J]. Int. J. Hydrogen Energy, 2017, 42(10): 7241-7245.
[13] Shu Q Z(舒清柱), Ding W Y(丁伟元), Zhao H(赵红). Study of a novel gas diffusion layer based on carbon fiber/carbon nanotubes[J]. J. Dalian Jiaotong Univ.(大连交通大学学报), 2020, 41(5): 71-77.
[14] Shahgaldi S, Ozden A, Li X G, Hamdullahpur F. Cathode catalyst layer design with gradients of ionomer distribution for proton exchange membrane fuel cells[J]. Energ. Convers. Manage., 2018, 171: 1476-1486.
[15] Thanh N T K, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution[J]. Chem. Rev., 2014, 114(15): 7610-7630.
[16] Deng R, Xia Z, Sun R, Deng R Y, Xia Z X, Sun R L, Wang S L, Sun G Q. Nanostructured ultrathin catalyst layer with ordered platinum nanotube arrays for polymer electrolyte membrane fuel cells[J]. J. Energy Chem., 2020, 29(4): 33-39.
[17] Lu Y, Du S, Steinberger-Wilckens R. Temperature-controlled growth of single-crystal Pt nanowire arrays for high performance catalyst electrodes in polymer electrolyte fuel cells[J]. Appl. Catal. B-Environ., 2015, 164: 389-395.
[18] Li B, Yan Z Y, Higgins D C, Yang D J, Chen Z W, Ma J X. Carbon-supported Pt nanowire as novel cathode catalysts for proton exchange membrane fuel cells[J]. J. Power Sources, 2014, 262: 488-493.
[19] Meng H, Xie F Y, Chen J, Sun S H, Shen P K. Morphology controllable growth of Pt nanoparticles/nanowires on carbon powders and its application as novel electro-catalyst for methanol oxidation[J]. Nanoscale, 2011, 3(12): 5041-5048.
[20] Sun S H, Yang D Q, Villers D, Zhang G X, Sacher E, Dodelet J P. Template- and surfactant-free room temperature synjournal of self-assembled 3D Pt nanoflowers from single-crystal nanowires[J]. Adv. Mater., 2008, 20(3): 571-574.
[21] Li M F, Zhao Z P, Cheng T, Fortunelli A, Chen C Y, Yu R, Zhang Q H, Gu L, Merinov B V, Lin Z Y, Zhu E B, Yu T, Jia Q Y, Guo J H, Zhang L, Goddard W A, Huang Y, Duan X F. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction[J]. Science, 2016, 354(6318): 1414-1419.
[22] Yao X Y, Su K H, Sui S, Mao L W, He A, Zhang J L, Du S F. A novel catalyst layer with carbon matrix for Pt nanowire growth in proton exchange membrane fuel cells (PEMFCs)[J]. Int. J. Hydrogen Energy, 2013, 38(28): 12374-12378.
[23] Wang C, Cheng X J, Lu J B, Shen S Y, Yan X H, Yin J W, Wei G H, Zhang J L. The Experimental measurement of local and bulk oxygen transport resistances in the catalyst layer of proton exchange membrane fuel cells[J]. J. Phys. Chem. Lett., 2017, 8(23): 5848-5852.
[24] Randall C R, DeCaluwe S C. Physically based modeling of PEMFC cathode catalyst layers: effective microstructure and ionomer structure-property relationship impacts[J]. J. Electrochem. En. Conv. Stor., 2020, 17(4): 1-14.
[25] Mohanta P K, Ripa M S, Regnet F, Joerissen L. Impact of membrane types and catalyst layers composition on performance of polymer electrolyte membrane fuel cells[J]. Chemistryopen, 2020, 9(5): 607-615.
[26] Huang C P, Odetola C B, Rodgers M. Nanoparticle seeded pulse electrodeposition for preparing high performance Pt/C electrocatalysts[J]. Appl. Catal. A - Gen., 2015, 499: 55-65.
文章导航

/