欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

金属钯插层类水滑石的制备及其电催化乙醇的性能研究

  • 胡守训 ,
  • 李亮 ,
  • 杨俊豪 ,
  • 李刘强 ,
  • 靳志豪
展开
  • 上海理工大学环境与建筑学院,上海 200093
* Tel: (86)15900431912,E-mail: liliang@usst.edu.cn

收稿日期: 2020-07-29

  修回日期: 2020-11-13

  网络出版日期: 2020-11-16

基金资助

国家自然科学基金项目(51208299)

Preparations and Electrocatalytic Ethanol Properties of Palladium Intercalated Hydrotalcite

  • Shou-Xun Hu ,
  • Liang Li ,
  • Jun-Hao Yang ,
  • Liu-Qiang Li ,
  • Zhi-Hao Jin
Expand
  • School of Environment and Architecture,University of Shanghai for Science and Technology, Shanghai 200093, China

Received date: 2020-07-29

  Revised date: 2020-11-13

  Online published: 2020-11-16

摘要

高性能的电催化剂对直接燃料电池的商业化应用有着至关重要的作用,目前的阳极材料还存在活性低、易中毒、成本高等问题。本研究以层状双氢氧化物(layered double hydroxides, LDHs)为载体通过浸渍法制备了新型纳米钯(Pd)催化剂,并通过X射线衍射仪、扫描电子显微镜、电感耦合等离子体质谱仪、能谱仪、透射电子显微镜、循环伏安法测试、计时电流测试和电化学阻抗等方法对催化剂的结构和电催化性能进行了研究。结果表明,新制备的Pd/Mg-Al-LDHs仍然保持着LDHs的层状结构,循环伏安测试表明在碱性条件下,Pd/Mg-Al-LDHs比Pd/C有更好的电催化乙醇活性和抗中间产物中毒性能,且乙醇浓度、扫描速率和温度等因素对峰电流有着直接影响。计时电流测试表明在电催化乙醇的过程中Pd/Mg-Al-LDHs比Pd/C拥有更高的电催化活性和稳定性。电化学阻抗测试表明,Pd插层可显著改善Mg-Al-LDHs的导电性,并降低电催化过程中电荷转移阻力。

本文引用格式

胡守训 , 李亮 , 杨俊豪 , 李刘强 , 靳志豪 . 金属钯插层类水滑石的制备及其电催化乙醇的性能研究[J]. 电化学, 2021 , 27(1) : 100 -107 . DOI: 10.13208/j.electrochem.200729

Abstract

High-performance electrocatalysts play a vital role in the commercial application of direct fuel cells. Current anode materials still have such problems as low activity, easy poisoning and high cost. In this study, a new type of nano- palladium (Pd) catalyst was prepared by dipping method using layered double hydroxides (LDHs) as the carrier. X-ray diffractometer, scanning electron microscope (SEM), inductively coupled plasma mass spectrometer (ICP-MS), energy spectrometer, transmission electron microscope (TEM), cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscope were used to analyze the structure and electrocatalytic performance of the catalyst. The results showed that the newly prepared Pd/Mg-Al-LDHs still maintained the layered structure of LDHs, and the metal Pd was evenly dispersed between the layers of hydrotalcite. Cyclic voltammetric curves showed that under alkaline conditions, the peak current density of Pd/Mg-Al-LDHs with 7% Pd in electrocatalytic ethanol was 36 mA·cm-2. The peak current density of commercial Pd/C in electrocatalytic ethanol was 30 mA·cm-2, and Pd/Mg-Al-LDHs exhibited better resistance to intermediate product poisoning. The factors including ethanol concentration, scanning rate and temperature were found to be effective, in particular, peak current had a direct effect. The chronoamperometric test revealed that Pd/Mg-Al-LDHs displayed higher electrocatalytic activity and stability toward ethanol than Pd/C, and the current density of Pd/Mg-Al-LDHs at 2000 s was 12 times to that of the commercial Pd/C. The electrochemical impedance data showed that Pd intercalation could significantly improve the conductivity of Mg-Al-LDHs and reduce the resistance to charge transfer during the electrocatalytic process.

参考文献

[1] Kamarudin M Z F, Kamarudin S K, Masdar M S, Daud W R W. Review: Direct ethanol fuel cells[J]. Int. J. Hydrog. Energy, 2013,38(22):9438-9453.
[2] Chu Y H, Shul Y G. Alcohol crossover behavior in direct alcohol fuel cells (DAFCs) system[J]. Fuel Cells, 2012,12(1):109-115.
[3] Choudhary A K, Pramanik H. Addition of rhenium (Re) to Pt-Ru/f-MWCNT anode electrocatalysts for enhancement of ethanol electrooxidation in half cell and single direct ethanol fuel cell[J]. Int. J. Hydrog. Energy, 2020,45(24):13300-13321.
[4] Li Z P, Lu H L, Li Q, Zhao X S, Guo P Z. Template synjournal of palladium nanotubes and their electrocatalytic properties[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2015,464(5):129-133.
[5] Souza F M, B?hnstedt P, Pinheiro V S, Oliveira L A, Batista B L, Parreira L S, Antunes R A, Santos M C. Niobium increasing the electrocatalytic activity of palladium for alkaline direct ethanol fuel cell[J]. J. Electroanal. Chem., 2020,858(16):113824-113832.
[6] Muneeb O, Estrada J, Tran L, Nguyen K, Flores J, Hu S Z, Fry-Petit A M, Scudiero L, Ha S, Haan J L. Electrochemical oxidation of polyalcohols in alkaline media on palladium catalysts promoted by the addition of copper[J]. Electrochim. Acta, 2016,218(7):133-139.
[7] Zhang R L, Duan J J, Han Z, Feng J J, Huang H, Zhang Q L, Wang A J. One-step aqueous synjournal of hierarchically multi-branched PdRuCu nanoassemblies with highly boosted catalytic activity for ethanol and ethylene glycol oxidation reactions[J]. Appl. Surf. Sci., 2020,506(26):144791-144799.
[8] Chowdhury S R, Maiyalagan T, Bhattachraya S K, Gayen A. Influence of phosphorus on the electrocatalytic activity of palladium nickel nanoalloy supported on N-doped reduced graphene oxide for ethanol oxidation reaction[J]. Electrochim. Acta, 2020,342(16):136028-136042.
[9] Yang H L, Yu Z N, Li S W, Zhang Q L, Jin J, Ma J T. Ultrafine palladium-gold-phosphorus ternary alloyed nanoparticles anchored on ionic liquids-noncovalently functionalized carbon nanotubes with excellent electrocatalytic property for ethanol oxidation reaction in alkaline media[J]. J. Catal., 2017,353(3):256-264.
[10] Safavi A, Kazemi H, Momeni S, Tohidi M, Mehrin P K. Facile electrocatalytic oxidation of ethanol using Ag/Pd nanoalloys modified carbon ionic liquid electrode[J]. Int. J. Hydrog. Energy, 2013,38(8):3380-3386.
[11] Ramulifho T, Ozoemena K I, Modibedi R M, Jafta C J, Mathe M K. Fast microwave-assisted solvothermal synjournal of metal nanoparticles (Pd, Ni, Sn) supported on sulfonated MWCNTs: Pd-based bimetallic catalysts for ethanol oxidation in alkaline medium[J]. Electrochim. Acta, 2012,59(6):310-320.
[12] Wang Y, Shi F F, Yang Y Y, Cai W B. Carbon supported Pd-Ni-P nanoalloy as an efficient catalyst for ethanol electro-oxidation in alkaline media[J]. J. Power Sources, 2013,243(4):369-373.
[13] Mao H M, Wang L L, Zhu P P, Xu Q J, Li Q X. Carbon-supported PdSn-SnO2 catalyst for ethanol electro-oxidation in alkaline media[J]. Int. J. Hydrog. Energy, 2014,39(31):17583-17588.
[14] Liu S Y, Zhou Q Z, Jin Z N, Jiang H J, Jiang X Z. Dodecylsulfate anion embedded layered double hydroxide supported nanopalladium catalyst for the suzuki reaction[J]. Chin. J. Catal., 2010,31(5):557-561.
[15] Zhou L L, Xie X L, Xie R G, Guo H, Wang M H, Wang L J. Facile synjournal of AuPd nanowires anchored on the hybrid of layered double hydroxide and carbon black for enhancing catalytic performance towards ethanol electro-oxidation[J]. Int. J. Hydrog. Energy, 2019,44(47):25589-25598.
[16] Almeida T S, Yu Y, de Andrade A R, Abruna H D. Employing iron and nickel to enhance ethanol oxidation of Pd-based anodes in alkaline medium[J]. Electrochim. Acta, 2019,295(13):751-758.
[17] Wang Y R, He Q L, Ding K Q, Wei H G, Guo J, Wang Q, O′Connor R, Huang X H, Luo Z P, Shen T D, Wei S Y, Guo Z H. Multiwalled carbon nanotubes composited with palladium nanocatalysts for highly efficient ethanol oxidation[J]. J. Electrochem. Soc., 2015,162(7):F755-F763.
[18] Li L, Yang Y, Wang Y W, Liang M L, Huang Y X. Electrochemical activity of layered double hydroxides supported nano Pt clusters toward methanol oxidation reaction in alkaline solutions[J]. J. Mater. Res. Technol-JMRT, 2020,9(3):5463-5473.
[19] Zhou W, Zhai C, Du Y, Xu J K, Yang P. Electrochemical fabrication of novel platinum-poly(5-nitroindole) composite catalyst and its application for methanol oxidation in alkaline medium[J]. Int. J. Hydrog. Energy, 2009,34(23):9316-9323.
[20] Zhang Y M, Liu Y, Liu W H, Li X Y, Mao L Q. Synjournal of honeycomb-like mesoporous nitrogen-doped carbon nanospheres as Pt catalyst supports for methanol oxidation in alkaline media[J]. Appl. Surf. Sci., 2017,407(1):64-71.
[21] Zhao Y C, Yang X L, Tian J N, Wang F Y, Zhan L. Methanol electro-oxidation on Ni@Pd core-shell nano-particles supported on multi-walled carbon nanotubes in alkaline media[J]. Int. J. Hydrog. Energy, 2010,35(8):3249-3257.
[22] Ahmad Y H, Mohamed A T, Alashraf A, Matalqeh M, El-Shafei A, Al-Qaradawi S Y, Aljaber A S. Highly porous PtPd nanoclusters synthesized via selective chemical etching as efficient catalyst for ethanol electro-oxidation[J]. Appl. Sur. Sci., 2020,508(16):145222-145231.
[23] Zhu J Y, Chen S Q, Xue Q, Li F M, Yao H C, Xu L, Chen Y. Hierarchical porous Rh nanosheets for methanol oxidation reaction[J]. Appl. Catal. B - Environ, 2020,264(18):118520-118527.
文章导航

/