欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

锂金属电池用三维半互穿网络聚合物电解质的制备

  • 张运丰 ,
  • 王佳颖 ,
  • 李晓洁 ,
  • 赵诗宇 ,
  • 何阳 ,
  • 霍士康 ,
  • 王雅莹 ,
  • 谭畅
展开
  • 中国地质大学(武汉)材料与化学学院,湖北 武汉 430074
* Tel:(86-27)67883049, E-mail: zhangyf329@gmail.com

收稿日期: 2020-09-27

  修回日期: 2020-10-10

  网络出版日期: 2020-11-10

基金资助

国家重点研发计划项目(2018YFB1502903);国家自然科学基金项目(21603197)

Preparation of 3D Semi-Interpenetrated Polymer Networks Polymer Electrolyte for Lithium Metal Battery

  • Yun-Feng Zhang ,
  • Jia-Ying Wang ,
  • Xiao-Jie Li ,
  • Shi-Yu Zhao ,
  • Yang He ,
  • Shi-Kang Huo ,
  • Ya-Ying Wang ,
  • Chang Tan
Expand
  • Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan), Wuhan 430074, Hubei, China

Received date: 2020-09-27

  Revised date: 2020-10-10

  Online published: 2020-11-10

摘要

锂金属电池作为下一代高比能量电池技术受到人们越来越广泛的关注。然而由锂枝晶生长引发的安全问题是锂金属电池商业化面临的最大挑战之一。具有高锂离子迁移数和离子电导率的聚合物电解质是抑制锂枝晶生长的重要策略之一。本文将季戊四醇四丙烯酸酯和自由基引发剂AIBN添加至商业化电解液中,采用具有单离子传导功能的多孔聚合物电解质为锂金属电池的电解质隔膜,通过在电池内部发生热诱导原位聚合制备三维半互穿网络单离子传导聚合物电解质,达到提高电解质隔膜离子电导率和机械拉伸性能,以及有效抑制锂枝晶生长的目的。通过该策略的实施,成功获得了室温离子电导率0.53 mS·cm-1和锂离子迁移数0.65的良好结果。应用于锂金属电池,证明该电解质能够有效抑制锂枝晶的生长和倍率性能的提高,为锂金属电池的开发提供了良好的解决路径。

本文引用格式

张运丰 , 王佳颖 , 李晓洁 , 赵诗宇 , 何阳 , 霍士康 , 王雅莹 , 谭畅 . 锂金属电池用三维半互穿网络聚合物电解质的制备[J]. 电化学, 2021 , 27(4) : 413 -422 . DOI: 10.13208/j.electrochem.200915

Abstract

As the next generation high-energy batteries, lithium metal battery has attracted more and more attention due to its highest specific capacity (3860 mA·h·g-1) and the lowest anode potential (-3.04 V versus the standard hydrogen electrode, SHE). However, the safety problem caused by lithium dendrite growth is one of the biggest challenges for the commercialization of lithium metal batteries. Single ion conducting polymer electrolytes, which deliver high lithium ion transference number, represent one of the important strategies to inhibit lithium dendrite growth. However, the poor compatibility with electrodes and low ionic conductivity largely limit their practical application. In the present work, the cross-linking pentaerythritol tetraacrylate precursor and AIBN radical initiator was select as an additive in the commercial 1 mol·L-1 LiPF6-EC/PC (v:v = 1:1) electrolyte, and then was added into the high porous single ion conducting polymer electrolyte. The as-prepared single ion conducting polymer electrolyte was used as the polymer electrolyte for assembling lithium metal battery with the LiFePO4 cathode. The three-dimensional semi-interpenetrating network inside the high porous single ion conducting polymer electrolyte was fabricated by thermal-induced in-situ polymerization inside of the battery by putting the battery in an oven at high temperature. The key properties were successfully investigated. The results indicated that the formed three-dimensional semi-interpenetrating network of the single ion conducting polymer electrolyte was great favorable to improve the ionic conductivity and mechanical property of the polymer electrolyte, and subsequently, to effectively inhibit the growth of lithium dendrite. As a result, the ionic conductivity of 0.53 mS·cm-1 at room temperature and lithium ion transference number of 0.65 were successfully obtained through the implementation of this strategy. It is proved that the as-presented electrolyte can effectively inhibit the growth of lithium dendrite and improve the rate performance, which provides a facile solution for the development of lithium metal battery technology.

参考文献

[1] He G, Li Q W, Shen Y L, Ding Y. Flexible amalgam film enables stable lithium metal anodes with high capacities[J]. Angew. Chem. Int. Ed., 2019, 58(51): 18466-18470.
[2] Chi S S, Qi X G, Hu Y S, Fan L Z. 3D flexible carbon felt host for highly stable sodium metal anodes[J]. Adv. Energy Mater., 2018, 8(15): 1702764.
[3] Albertus P, Babinec S, Litzelman S, Newman A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nat. Energy, 2018, 3: 16-21.
[4] Lin D C, Liu Y Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nat. Nanotechnol., 2017, 12(3): 194-206.
[5] Cheng X B, Zhang R, Zhao C Z, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem. Rev., 2017, 117(15): 10403-10473.
[6] Xu W, Wang J L, Ding F, Chen X L, Nasybutin E, Zhang Y H, Zhang J G. Lithium metal anodes for rechargeable batteries[J]. Energy Environ. Sci., 2014, 7(2): 513-537.
[7] Chen Y Z, Elangovan A, Zeng D L, Zhang Y F, Ke H Z, Li J, Sun Y B, Cheng H S. Vertically aligned carbon nanofibers on Cu foil as a 3D current collector for reversible Li plating/stripping toward high-performance Li-S batteries[J]. Adv. Funct. Mater., 2020, 30(4): 1906444.
[8] Nguyen H D, Kim G T, Shi J, Paillard E, Judeinstein P, Lyonnard S, Bresser D, Iojoiu C. Nanostructured multi-block copolymer single-ion conductors for safer high-per-formance lithium batteries[J]. Energy Environ. Sci., 2018, 11(11): 3298-3309.
[9] He Y, Wang J Y, Zhang Y F, Huo S K, Zeng D L, Lu Y, Liu Z H, Wang D L, Cheng H S. Effectively suppressing lithium dendrite growth via an es-LiSPCE single-ion conducting nano fiber membrane[J]. J. Mater. Chem. A, 2020, 8(5): 2518-2528.
[10] Liu M, Deng N P, Ju J G, Wang L Y, Wang G, Ma Y L, Kang W M, Yan J. Silver nanoparticle-doped 3D porous carbon nanofibers as separator coating for stable lithium metal anodes[J]. ACS Appl. Mater. Interfaces, 2019, 11(19): 17843-17852.
[11] Wang H, Fan S J, Cao Y L, Yang H X, Ai X P, Zhong F P. Building a cycle-stable Fe-Si alloy/carbon nanocomposite anode for Li-ion batteries through a covalent-bonding method[J]. ACS Appl. Mater. Interfaces, 2020, 12(27): 30503-30509.
[12] Shen Y F, Qian J F, Yang H X, Zhong F P, Ai X P. Chemically prelithiated hard-carbon anode for high power and high capacity Li-ion batteries[J]. Small, 2020, 16(7): 1907602.
[13] Yao Y Z, Zhao X H, Razzaq A A, Gu Y T, Yuan X T, Shah R, Lian Y B, Lei J X, Mu Q Q, Ma Y, Peng Y, Deng Z, Liu Z F. Mosaic rGO layers on lithium metal anodes for the effective mediation of lithium plating and stripping[J]. J. Mater. Chem. A, 2019, 7(19): 12214-12224.
[14] Pathak R, Chen K, Gurung A, Reza K M, Bahrami B, Wu F, Chaudhary A, Ghimire N, Zhou B, Zhang W H, Zhou Y, Qiao Q Q. Ultrathin bilayer of graphite/SiO2 as solid interface for reviving Li metal anode[J]. Adv. Energy Mater., 2019, 9(36): 1901486.
[15] Zhang H, Li C M, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez L M, Armand M, Zhou Z B. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives[J]. Chem. Soc. Rev., 2017, 46(3): 797-815.
[16] Yang J(杨娟), Lang J W(郎俊伟), Zhang P(张鹏), Liu B(刘宝). Preparations of nanostructural MnO-porous graphene hybrid material by thermally-driven etching of MnO for lithium-air batteries[J]. J. Electrochem.(电化学), 2019, 25(5): 621-630.
[17] Hu X L(胡晓兰), Zhou C(周川), Dai S W(代少伟), Liu W J(刘文军), Li W D(李伟东), Zhou Y J(周玉敬), Qiu H(邱虹), Bai H(白华). Micro-structures and dynamic thermal mechanical properties of graphene oxide modified carbon fiber/epoxy resin composites with different fiber surface properties[J]. Acta Mater. Compos. Sin.(复合材料学报), 2020, 37(5): 1070-1080.
[18] Zhang Y F, Pan M Z, Liu X P, Li C C, Dong J M, Sun Y B, Zeng D L, Yang Z H, Cheng H S. Overcoming the ambient-temperature operation limitation in lithium-ion batteries by using a single-ion polymer electrolyte fabricated by controllable molecular design[J]. Energy Technol., 2018, 6(2): 289-295.
[19] Zhang J W, Wang S J, Han D M, Xiao M, Sun L Y, Meng Y Z. Lithium (4-styrenesulfonyl) (trifluoromethanesulfonyl) imide based single-ion polymer electrolyte with superior battery performance[J]. Energy Storage Mater., 2020, 24: 579-587.
[20] Shin D M, Bachman J E, Taylor M K, Kamcev J, Park J G, Ziebel M E, Velasquez E, Jarenwattananon N N, Sethi G K, Cui Y, Long J R. A single-ion conducting borate network polymer as a viable quasi-solid electrolyte for lithium metal batteries[J]. Adv. Mater., 2020, 32: 1905771.
[21] Liu J C, Pickett P D, Park B, Upadhyay S P, Orski S V, Schaefer J L. Non-solvating, side-chain polymer electrolytes as lithium single-ion conductors: synjournal and ion transport characterization[J]. Polym. Chem., 2020, 11(2): 461-471.
[22] Deng K R, Zeng Q G, Wang D, Liu Z, Qiu Z P, Zhang Y F, Xiao M, Meng Y Z. Single-ion conducting gel polymer electrolytes: design, preparation and application[J]. J. Mater. Chem. A, 2020, 8(4): 1557-1577.
[23] Zhang Y F, Cai W W, Rohan R, Pan M Z, Liu Y, Liu X P, Li C C, Sun Y B, Cheng H S. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp3 boron-based solid single ion conducting polymer electrolyte[J]. J. Power Sources, 2016, 306: 152-161.
[24] Zhang Y F, Rohan R, Cai W W, Xu G D, Sun Y B, Lin A, Cheng H S. Influence of chemical microstructure of single-ion polymeric electrolyte membranes on performance of lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2014, 6(20): 17534-17542.
[25] Zhang Y F, Lim C A, Cai W W, Rohan R, Xu G D, Sun Y B, Cheng H S. Design and synjournal of a single ion conducting block copolymer electrolyte with multifunctionality for lithium ion batteries[J]. RSC Adv., 2014, 4(83): 43857-43864.
[26] Zhang Y F, Xu G D, Sun Y B, Han B, Teguh B W T, Chen Z X, Rohan R, Cheng H S. A class of sp3 boron-based single-ion polymeric electrolytes for lithium ion batteries[J]. RSC Adv., 2013, 3(35): 14934-14937.
[27] Wang J Y, He Y, Wu Q, Zhang Y F, Li Z Y, Liu Z H, Huo S K, Dong J M, Zeng D L, Cheng H S. A facile non-solvent induced phase separation process for preparation of highly porous polybenzimidazole separator for lithium metal battery application[J]. Sci. Rep., 2019, 9: 19320-19329.
[28] Hu J(胡静), Huang B(黄碧斌), Jiang L P(蒋莉萍), Fang K H(冯凯辉), Li Q H(李琼慧), Xu Z(许钊). Application and major issues of electrochemical energy storage under the environment of power market[J]. Electric Power(中国电力), 2020, 53(1): 100-107.
[29] Xu R, Xiao Y, Zhang R, Cheng X B, Zhao C Z, Zhang X Q, Yan C, Zhang Q, Huang J Q. Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries[J]. Adv. Mater., 2019, 31(19): 1808392.
[30] Liu Z H, Chai J C, Xu G J, Wang Q F, Cui G L. Functional lithium borate salts and their potential application in high performance lithium batteries[J]. Coord. Chem. Rev., 2015, 292: 56-73.
[31] Qin B S, Liu Z H, Zheng J, Hu P, Ding G L, Zhang C J, Zhao J H, Kong D S, Cui G L. Single-ion dominantly conducting polyborates towards high performance electrolytes in lithium batteries[J]. J. Mater. Chem. A, 2015, 3(15): 7773-7779.
[32] Qin B S, Liu Z H, Ding G L, Duan Y L, Zhang C J, Cui G L. A single-ion gel polymer electrolyte system for improving cycle performance of LiMn2O4 battery at elevated temperatures[J]. Electrochim. Acta, 2014, 141: 167-172.
[33] Zhang Y F, Chen Y Z, Liu Y, Qin B S, Yang Z H, Sun Y B, Zeng D L, Varzi A, Passerini S, Liu Z H, Cheng H S. Highly porous single-ion conductive composite polymer electrolyte for high performance Li-ion batteries[J]. J. Power Sources, 2018, 397: 79-86.
[34] Dong J M, Zhang Y F, Wang J Y, Yang Z H, Sun Y B, Zeng D L, Liu Z H, Cheng H S. Highly porous single ion conducting polymer electrolyte for advanced lithium-ion batteries via facile water-induced phase separation process[J]. J. Membr. Sci., 2018, 568: 22-29.
[35] Liu Y, Zhang Y F, Pan M Z, Liu X P, Li C C, Sun Y B, Zeng D L, Cheng H S. A mechanically robust porous single ion conducting electrolyte membrane fabricated via self-assembly[J]. J. Membr. Sci., 2016, 507: 99-106.
[36] Li C C, Qin B S, Zhang Y F, Varzi A, Passerini S, Wang J Y, Dong J M, Zeng D L, Liu Z H, Cheng H S. Single-ion conducting electrolyte based on electrospun nanofibers for high-performance lithium batteries[J]. Adv. Energy Mater., 2019, 9(10): 1970029.
[37] Zan L N(昝丽娜). Comprehensive experimental design of preparation of multiwalled carbon nanotubes/polyvinyl alcohol composite fiber by electrospining[J]. Chin. J. Chem. Edu.(化学教育(中英文)), 2020, 29(41): 76-80.
[38] Li H, Wu D B, Wu J, Dong L Y, Zhu Y J, Hu X L. Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries[J]. Adv. Mater., 2017, 29(44): 1703548.
文章导航

/