欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

BC/CoNi2S4@PPy柔性复合电极材料的制备及电化学性能

  • 彭思源 ,
  • 杨实润 ,
  • 周静红 ,
  • 隋志军 ,
  • 章涛 ,
  • 石易 ,
  • 周兴贵
展开
  • 华东理工大学化工学院,上海 200237
* Tel: (86-21)64252169, E-mail: jhzhou@ecust.edu.cn

收稿日期: 2020-06-30

  修回日期: 2020-09-07

  网络出版日期: 2020-11-03

基金资助

国家重点基础研究发展计划项目(2014CB239702);国家自然科学基金项目(21676082)

Preparations and Electrochemical Properties of BC/CoNi2S4@PPy Flexible Composites for Supercapacitors

  • Si-Yuan Peng ,
  • Shi-Run Yang ,
  • Jing-Hong Zhou ,
  • Zhi-Jun Sui ,
  • Tao Zhang ,
  • Yi Shi ,
  • Xing-Gui Zhou
Expand
  • School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

Received date: 2020-06-30

  Revised date: 2020-09-07

  Online published: 2020-11-03

摘要

本文采用溶剂热、原位聚合和真空抽滤相结合的方法制备了用于超级电容器的细菌纤维素/镍钴硫化物/聚吡咯(BC/CoNi2S4@PPy)柔性电极材料,通过X射线衍射、场发射扫描电镜、红外光谱、氮气吸脱附、拉伸强度和接触角表征了材料的形貌结构、组成、机械性能和亲水性,并采用循环伏安法和恒电流充放电测试了复合材料的电化学性能。结果表明,表面含氧官能团丰富的BC纤维网络结构对氧化还原活性物质CoNi2S4的生长和导电聚合物PPy的分布具有引导作用,CoNi2S4均匀分布在BC网络中,且PPy均匀包覆在BC纤维和CoNi2S4纳米球表面构成具有丰富孔隙结构的三维导电网络,使得该复合材料具有较好的机械性(抗拉强度达28.0±0.1 MPa)、亲水性(对6 mol·L-1 KOH的瞬间接触角为43.6°)及良好的导电性。该电极材料在1 A·g-1下比电容高达2670 F·g-1,充放电循环10000次后比电容的保持率为82.73%,且经1000次反复弯曲后电化学性能保持不变。此外,将其与活性炭组成的非对称超级电容器,在1 A·g-1下比电容为1428 F·g-1,最高能量密度和功率密度分别达49.8 Wh·kg-1和741.8 W·kg-1

本文引用格式

彭思源 , 杨实润 , 周静红 , 隋志军 , 章涛 , 石易 , 周兴贵 . BC/CoNi2S4@PPy柔性复合电极材料的制备及电化学性能[J]. 电化学, 2021 , 27(1) : 14 -25 . DOI: 10.13208/j.electrochem.200630

Abstract

Flexible supercapacitor is one of the most promising energy storage devices for portable and wearable electronic products due to its advantages of high power density, fast charging and long cycle life. Therefore, self-supporting flexible electrode materials with high performance have attained more and more attention both in academia and in industry recently. In this work, using bacterial cellulose (BC) as a flexible substrate, the bacterial cellulose/nickel-cobalt sulfide@polypyrrole (BC/CoNi2S4@PPy) flexible composites with three-dimensional porous network and good conductivity were prepared by a combined solvothermal-in-situ polymerization-vacuum filtration method. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectrometry, N2 physisorption, tensile strength and contact angle measurements. Their electrochemical performances were tested by cyclic voltammetry, galvanostatic charge/discharge testing and electrochemical impedance spectroscopy. The results show that the three-dimensional porous network of BC fibers with rich oxygen-containing surface groups play a guiding role in the growth of the redox active material CoNi2S4 and the distribution of conductive polymer PPy, resulting in uniformly distributed CoNi2S4 nanospheres in the network of BC fibers, both coated evenly with a layer of conductive PPy. The resulting BC/CoNi2S4@PPy composites, a three-dimensional conductive network with high porosity, displayed good mechanical property (tensile strength up to 28.0±0.1 MPa), hydrophilicity (the instantaneous contact angle in 6 mol·L-1 KOH is 43.6°), as well as excellent electrochemical performance. The specific capacitance of the flexible BC/CoNi2S4@PPy was 2670 F·g-1 at 1 A·g-1 in a three-electrode system, and retained 82.7% after 10000 charge and discharge cycles. In addition, the electrochemical performance remained unchanged after 1000 times of repeated bending. In an asymmetric supercapacitor composed of BC/CoNi2S4@PPy and activated carbon, the area specific capacitance was 1428 F·g-1 at 1 A·g-1. The asymmetric supercapacitor achieved the maximum energy density of 49.8 Wh·kg-1 and power density of 741.8 W·kg-1.

参考文献

[1] Shi H M, Wen G L, Nie Y, Zhang G H, Duan H G. Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion[J]. Nanoscale, 2020,12(9):5261-5285.
[2] Dai C L, Sun G Q, Hu L Y, Xiao Y K, Zhang Z P, Qu L T. Recent progress in graphene-based electrodes for flexible batteries[J]. InfoMat, 2020,2(3):509-526.
[3] Luo Y, Wu P C, Li J W, Yang S C, Wu K L, Wu J N, Meng G H, Liu Z Y, Guo X H. Self-supported flexible supercapacitor based on carbon fibers covalently combined with monoaminophthalocyanine[J]. Chem. Eng. J., 2020,391:123535.
[4] Ye J B, Guo L X, Zheng S S, Feng Y J, Zhang T T, Yang Z C, Yuan Q S, Shen G P, Zhang Z. Synjournal of bacterial cellulose based SnO2-PPy nanocomposites as potential flexible, highly conductive material[J]. Mater. Lett., 2019,253:372-376.
[5] Pirsa S, Shamusi T, Kia E M. Smart films based on bacterial cellulose nanofibers modified by conductive polypyrrole and zinc oxide nanoparticles[J]. J. Appl. Polym. Sci., 2018,135(33-34):46617.
[6] Liu R, Ma L N, Huang S, Mei J, Li E Y, Yuan G H. Large areal mass and high scalable and flexible cobalt oxide/graphene/bacterial cellulose electrode for supercapacitors[J]. J. Phys. Chem. C, 2016,120(50):28480-28488.
[7] Müller D, Rambo C R, Recouvreux D O S, Porto L M, Barra G M O. Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers[J]. Synth. Met., 2011,161(1-2):106-111.
[8] Wu H, Zhang Y N, Yuan W Y, Zhao Y X, Luo S H, Yuan X W, Zheng L X, Cheng L F. Highly flexible, foldable and stretchable Ni-Co layered double hydroxide/polyaniline/bacterial cellulose electrodes for high-performance all-solid-state supercapacitors[J]. J. Mater. Chem. A, 2018,6(34):16617-16626.
[9] Liu P, Sui Y W, Wei F X, Qi J Q, Meng Q K, Ren Y J, He Y Z. One-step hydrothermal synjournal of CoNi2S4 for hybrid supercapacitor electrodes[J]. Nano, 2019,14(7):1950088.
[10] Li L, Lou Z, Han W, Chen D, Jiang K, Shen G Z. Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes[J]. Adv. Mater. Technol., 2017,2(3):1600282.
[11] Peng S, Fan L L, Wei C Z, Liu X H, Zhang H W, Xu W L, Xu J. Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes[J]. Carbohydr. Polym., 2017,157:344-352.
[12] Yang S R(杨实润). Preparation and electrochemical performance of the nickel cobalt sulfide as supercapacitor electrode material[D]. East China University of Science and Technology (华东理工大学), 2018.
[13] Mao X L, Xu J H, He X, Yang W Y, Yang Y J, Xu L, Zhao Y T, Zhou Y J. All-solid-state flexible microsupercapacitors based on reduced graphene oxide/multi-walled carbon nanotube composite electrodes[J]. Appl. Surf. Sci., 2017,435:1228-1236.
[14] Mykhailiv O, Imierska M, Petelczyc M, Echegoyen L, Plonska-Brzezinska M E. Chemical versus electrochemical synjournal of carbon nano-onion/polypyrrole composites for supercapacitor electrodes[J]. Chem.-Eur. J., 2015,21(15):5783-5793.
[15] Wu X M, Lian M. Highly flexible solid-state supercapacitor based on graphene/polypyrrole hydrogel[J]. J. Power Sources, 2017,362:184-191.
[16] Wang F, Kim H J, Park S K, Kee C D, Kim S J, Oh I K. Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network[J]. Compos. Sci. Technol., 2016,128:33-40.
[17] Zhang Y H, Shang Z, Shen M X, Chowdhury S P, Ignaszak A, Sun S H, Ni Y H. Cellulose nanofibers/reduced graphene oxide/polypyrrole aerogel electrodes for high-capacitance flexible all-solid-state supercapacitors[J]. ACS Sustain. Chem. Eng., 2019,7(13):11175-11185.
[18] Luo H L, Dong J J, Zhang Y, Li G, Guo R S, Zuo G F, Ye M D, Wang Z R, Yang Z W, Wan Y Z. Constructing 3D bacterial cellulose/graphene/polyaniline nanocomposites by novel layer-by-layer, in situ, culture toward mechanically robust and highly flexible freestanding electrodes for supercapacitors[J]. Chem. Eng. J., 2018,334:1148-1158.
[19] Qian T, Yu C F, Wu S S, Shen J. A facilely prepared poly-pyrrole-reduced graphene oxide composite with a crumpled surface for high performance supercapacitor electrodes[J]. J. Mater. Chem. A, 2013,1(22):6539-6542.
[20] Lv X D, Li G H, Pang Z Y, Li D W, Lei L, Lü P F, Mushtaq M, Wei Q F. Fabricate BC/Fe3O4@PPy 3D nanofiber film as flexible electrode for supercapacitor application[J]. J. Phys. Chem. Solids, 2018,116:153-160.
[21] Peng S, Xu Q, Fan L L, Wei C Z, Bao H F, Xu W L, Xu J. Flexible polypyrrole/cobalt sulfide/bacterial cellulose composite membranes for supercapacitor application[J]. Synth. Met., 2016,222:285-292.
文章导航

/