欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

电沉积法制备石墨烯纸-金属复合材料的初步研究

  • 刘双娟 ,
  • 王海静 ,
  • 郭靖 ,
  • 王鹏程 ,
  • 周昊 ,
  • 孟才 ,
  • 郭汉杰
展开
  • 1.北京科技大学冶金与生态工程学院,北京 100083
    2.中国科学院高能物理研究所,北京 100049
Tel:(86-10)62334964, E-mail: guojing@ustb.edu.cn
* Tel:(86-10)88233183, E-mail: wanghaijing@ihep.ac.cn;

收稿日期: 2020-06-13

  修回日期: 2020-07-20

  网络出版日期: 2020-09-23

基金资助

国家自然科学基金青年项目(11505195);国家自然科学基金青年项目(51704021);中央高校基本科研业务费(RF-TP-20-004A3);中央高校基本科研业务费(FRF-TP-19-030A2);中央高校基本科研业务费(FRF-TP-16-079A1)

A Preliminary Study on Graphene Film-Metal Composites Prepared by Electrodeposition

  • Shuang-Juan Liu ,
  • Hai-Jing Wang ,
  • Jing Guo ,
  • Peng-Cheng Wang ,
  • Hao Zhou ,
  • Cai Meng ,
  • Han-Jie Guo
Expand
  • 1. School of Metallurgical and Ecological Engineering, University of Science & Technology Beijing, Beijing 100089, China
    2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Received date: 2020-06-13

  Revised date: 2020-07-20

  Online published: 2020-09-23

摘要

石墨烯纸具有优良的导电导热性能,但强度和硬度较低。为了获得良好的综合力学性能以提高石墨烯纸的实用价值,本文提出了制备石墨烯纸-金属复合材料的构想,从实验上初步研究了电沉积法制备石墨烯纸-金属复合材料的可行性,并探究了石墨烯纸与电沉积金属界面结合情况。采用两种常见镀层金属Cu、Cr,在实验室使用电沉积法制备了石墨烯纸-Cu,石墨烯纸-Cr两种复合镀层材料。利用扫描电镜对复合材料的表面形貌和横截面进行了表征,结果显示石墨烯纸-Cr复合材料的界面结合相对紧密。本文首次将二维错配度应用到石墨烯纸与金属镀层界面结合力分析中,通过计算分析,常温下C 的(0001)面与Cr的(110)面的二维错配度为7.26%,晶格匹配度良好. 随温度升高,C-Cr界面错配度值减小,即晶格匹配度增加,另外C-Cr二元相图显示C与Cr发生反应生成的碳化物将进一步增强其界面结合。

本文引用格式

刘双娟 , 王海静 , 郭靖 , 王鹏程 , 周昊 , 孟才 , 郭汉杰 . 电沉积法制备石墨烯纸-金属复合材料的初步研究[J]. 电化学, 2021 , 27(4) : 396 -404 . DOI: 10.13208/j.electrochem.200614

Abstract

Graphene film (GF) has excellent electrical and thermal conductivity, but low strength and hardness. In order to obtain good comprehensive mechanical properties to improve the practical value of GF, the concept of preparing GF-metal composite materials was proposed. This work was conducted to preliminarily study the feasibility of using electrodeposition method to prepare GF-metal composites. Two kinds of composites, GF-Cu and GF-Cr, were successfully prepared by using GF as the cathode, and pure Cu and DSA (Dimensionally Stable Anode) as the anodes, respectively, with applying DC power externally. Employing certain electrochemical parameters, the cation in the electrolyte moved towards the cathode directionally. Meanwhile, the interface bonding between GF and electrodeposited metals was investigated. The surface morphology and cross-section characterization of the composites by scanning electron microscopy showed that the interface bonding of the GF-Cr composite was tighter than that of the GF-Cu composite. In addition, two-dimensional disregistry analyses were performed for the GF and metals coating interface bonding. Through calculation and analysis, the disregistry of the (110) surface on Cr is 7.26%, while that of the (111) surface on Cu is 31.92% at the(0001) surface of C and at room temperature, indicating that the lattice matching degree of C and Cr is better than that of C and Cu, which is consistent with the experimental results. As the temperature increased, the disregistry value of C-Cr interface decreased, that is, increasing the temperature is conducive to the increase of lattice matching of both. The C-Cr binary phase diagram also showed that the carbide generated by the reaction of C and Cr would further enhance the interface bonding. The effect of heating on the C-Cu interface bonding was more complicated. The results of heat treatment experiments showed that the heating increased the diffusion distance of C element to the copper coating, while the disregistry value of C-Cu interface increased with the increase of temperature. However, the interface bonding of GF and Cu still needs to be improved.

参考文献

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[2] Lee C, Wei X D, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
[3] Wang Y, Song Y, Zhang X Y, Ma Y F, Liang J J, Chen Y S. Room-temperature ferromagnetism of graphene[J]. Nano Lett., 2009, 9(1): 220-224.
[4] Yagi Y, Briere T M, Sluiter M H F, Kumar V, Farajian A A, Kawazoe Y. Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3d transition metals: A first-principles study[J]. Phys. Rev. B, 2004, 69(7): 075414.
[5] Zhao Z Z(赵真真), Ni W B(倪文彬), Gao N Y(高能越), Wang H B(王洪波), Zhao J W(赵健伟). Effects of graphene on the electrochemical behaviors of Ni(OH)2 as supercapacitor material[J]. J. Electrochem.(电化学), 2011, 17(3): 292-299.
[6] Hang L F, Zhao Y, Zhang H H, Liu G Q, Cai W P, Li Y, Qu L T. Copper nanoparticle@graphene composite arrays and their enhanced catalytic performance[J]. Acta Mater., 2016, 105: 59-67.
[7] Huang G, Wang H, Cheng P, Wang H Y, Sun B, Sun S, Zhang C C, Chen M M, Ding G F. Preparation and characterization of the graphene-Cu composite film by electrodeposition process[J]. Microelectron. Eng., 2016, 157: 7-12.
[8] Hou Y C(侯永超), Huang L J(黄林军), Wang Y X(王彦欣), Tang J G(唐建国), Liu J X(刘继宪), Wang Y(王瑶), Jiao J Q(焦吉庆), Wang W(王薇), Zhao Y C(赵运超). Preparation of graphene/silver hybrid materials and research of Raman enhanced performance[J]. Appl. Chem. Ind.(应用化工), 2016, 45(5): 806-809.
[9] Zhao Y R(赵亚茹), Li Y(李勇), Li H(李焕). Research progress of graphene reinforced copper matrix composites[J]. Surf. Technol.(表面技术), 2016, 45(5): 33-40.
[10] Niu Z Q, Chen J, Hng H H, Ma J, Chen X D. A leavening strategy to prepare reduced graphene oxide foams[J]. Adv. Mater., 2012, 24(30): 4144-4150.
[11] Pham V H, Cuong T V, Hur S H, Shin, E W, Chung J S, Kim E J. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating[J]. Carbon, 2010, 48(7): 1945-1951.
[12] Shuai X R(帅骁睿), Yang S L(杨仕玲), Yang H C(杨化超), Wu S H(吴声豪), Duan L P(段良平). Research on the penetration an electrochemical energy storage of graphene paper electrode for supercapacitor[J]. NCM(化工新型材料), 2019, 47(1): 124-127.
[13] Gwon H, Kim H, Lee K U, Seo D H, Park Y C, Lee Y S, Ahn B T, Kang K. Flexible energy storage devices based on graphene paper[J]. Energy Environ. Sci., 2011, 4(4): 1277-1283.
[14] Dai Y, Cai S D, Yang W J, Gao L, Tang W P, Xie J Y, Zhi J, Ju X M. Fabrication of self-binding noble metal/flexible graphene composite paper[J]. Carbon, 2012, 50(12): 4648-4654.
[15] Zan X. Flexible electrochemical biosensors based on interfacially assembled metal nanocrystals and graphene paper[D]. Singapore: Nanyang Technological University, 2016.
[16] Wang Z, Mao B Y, Wang Q L, Yu J, Dai J X, Song R G, Pu Z H, He D P, Wu Z, Mu S C. Ultrahigh conductive copper/large flake size graphene heterostructure thin-film with remarkable electromagnetic interference shielding effectiveness[J]. Small, 2018, 14(20): 1704332.
[17] Kirihata K, Arai S, Uejima M, Hirota M. Fabrication of copper/single-walled carbon nanotube composite plating films by electrodeposition[J]. J. Radiol., 2015, 89(10): 1450.
[18] Danilov F I, Protsenko V S, Gordiienko V O, Kwon S C, Lee J Y, Kim M. Nanocrystalline hard chromium electrodeposition from trivalent chromium bath containing carbamide and formic acid: Structure, composition, electrochemical corrosion behavior, hardness and wear characteristics of deposits[J]. Appl. Surf. Sci., 2011, 257(18): 8048-8053.
[19] Cheng T(程韬), Jia J G(贾建刚), Ma Q(马勤), Ji G S(季根顺), Guo T M(郭铁明). Deposition of homogeneous copper layer on short carbon fibers using electrochemical method[J]. T. Mater. Heat Treat., 2014, 35(9): 167-171.
[20] Gao H C, Wang Y X, Xiao F, Ching C B, Duan H W. Growth of copper nanocubes on graphene paper as free-standing electrodes for direct hydrazine fuel cells[J]. J. Phys. Chem. C, 2012, 116(14): 7719-7725.
[21] Wang P(王鹏), Li C R(李长荣), Liu R(刘然), Shi S(师帅). Calculation of disregistry degree of ε-Cu precipitation induced by rare earth inclusion in steel[J]. J. Chin. Soc. Rear Earth.(中国稀土学报), 2018, 36(3): 314-318.
[22] Song Q(宋琴), Wu J W(武俊伟), Zhang H(张辉), Du C W(杜翠薇). Performance of Ti-based dimensionally stable anode for chromium plating application[J]. J. Chin. Soc. Corros. Prot.(中国腐蚀与防护学报), 2013, 33(6): 507-514.
[23] Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metall. Trans., 1970, 1(7): 1987-1995.
[24] Shi R X(师瑞霞), Yang R C(杨瑞成), Zhou C H(周春华), Yin Y S(尹衍升), Ma L P(马来鹏). The relationship between lattice constants and temperature in EET[J]. J. Shanghai. Univ. -Eng. Sci.(山东大学学报: 工学版), 2004, 34(5): 5-8,98.
[25] Gómez M A, Romero J, Lousa A, Esteve J. Tribological performance of chromium/chromium carbide multilayers deposited by r.f. magnetron sputtering[J]. Surf. Coat. Technol., 2005, 200(5-6): 1819-1824.
[26] Qin Z B, Luo Q, Zhang Q, Wu Z, Liu L, Shen B, Hu W B. Improving corrosion resistance of nickel-aluminum bronzes by surface modification with chromium ion implantation[J]. Surf. Coat. Technol., 2018, 334: 402-409.
[27] Cao T C(曹天赐). Research on the performance and mechanism of lithium metal-graphene paper composite anode[D]. Beijing: Beijing University of Technology, 2019.
[28] Yu Y N(余永宁). Materials science[M]. Beijing: Higher Education Press(高等教育出版社), 2006: 777-781.
[29] Chen W R(陈蔚然). Crystal structure of graphite[J]. Carbon Tech.(炭素技术), 1990, 4: 39-40.
[30] Zhang H H(张恒华). Metal binary system phase diagram manual[J]. Heat Treat.(热处理), 2010, 25(1): 78.
文章导航

/