欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

类石墨烯类活性炭材料的简易合成及其在锂硫电池中的应用研究

  • 孟全华 ,
  • 邓雯雯 ,
  • 李长明
展开
  • 1.西南大学材料与能源学院,洁净能源和先进材料研究所,重庆 400715
    2.苏州科技大学材料科学与工程学院,江苏 苏州 215009
    3.青岛大学生命科学学院,先进跨学科科学研究所,山东 青岛,266071

收稿日期: 2020-06-28

  修回日期: 2020-09-01

  网络出版日期: 2020-09-21

Facile Synthesis of Nitrogen-Doped Graphene-Like Active Carbon Materials for High Performance Lithium-Sulfur Battery

  • Quan-hua MENG ,
  • Wen-wen DENG ,
  • Chang-ming LI
Expand
  • 1. Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P.R. China;
    2. Institute for Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science & Technology, Suzhou 215009, P.R. China;
    3. Institute for Advanced Cross-field Sciences, College of Life Science, Qingdao University, Qingdao 266071, P.R. China

Received date: 2020-06-28

  Revised date: 2020-09-01

  Online published: 2020-09-21

摘要

锂硫电池由于具有较高的理论容量被视为一种最具发展潜力的储能装置. 然而,硫的利用率较低及循环寿命短等问题限制着其商业化进程. 本文通过一种简单易行的方法将三聚氰胺(C3H6N6)和L半胱氨酸(C3H7NO2S)碳化,制备出一种氮掺杂类石墨烯活性炭材料(NGC). 该材料的类石墨烯结构能够有效抑制锂硫电池在充放电过程中产生的体积效应,以此提升其循环性能. 不仅如此,材料中含有的含氮官能团还可以促进离子转移,抑制多硫化物的溶解,进而提升硫的利用率. 其中,制备出的NGC-8/PS复合电极用于锂硫电池时在0.2 C的电流密度下初始容量为1164.1 mAh·g-1,在经过400圈的充放电循环之后依然具有909.4 mAh·g-1的比容量,每圈容量衰减仅为0.05%,甚至在2C的电流密度下也能达到820 mAh·g-1的高比容量.

本文引用格式

孟全华 , 邓雯雯 , 李长明 . 类石墨烯类活性炭材料的简易合成及其在锂硫电池中的应用研究[J]. 电化学, 2020 , 26(5) : 740 -749 . DOI: 10.13208/j.electrochem.200646

Abstract

Lithium-sulphur (Li-S) battery is regarded as a promising energy storage device because of its high theoretical capacity. However, the low S utilization and short cycling life limit the commercial applications. In this work, nitrogen-doped graphene-like carbon (NGC) materials were synthesized by simply pyrolyzing and carbonizing the mixture of melamine (C3H6N6) and L-cysteine (C3H7NO2S). The graphene-like structure in NGC effectively buffered the volume change of S during the discharge/charge process and improved the cycling stability. Meanwhile, nitrogen-containing functional groups in NGC facilitated the transportation of ions and suppressed the dissolution of polysulphide (PS), enabling a high utilization of S. As expected, the NGC-8 (the mass ratio of melamine and L-cysteine being 8:1)/PS cathode delivered a high initial discharge capacity of 1164.1 mAh·g-1 at 0.2 C and still retained 909.4 mAh·g-1 capacity after 400 cycles with a slow capacity decay rate of 0.05% per cycle. Even at as high as 2 C, a high-rate capacity of 820 mAh·g-1 could be achieved.

参考文献

[1] Yang Y, Zheng G Y, Cui Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013,42(7):3018-3032.
[2] Manthiram A, Chung S H, Zu C X. Lithium-sulfur batteries: Progress and prospects[J]. Advanced Materials, 2015,27(12):1980-2006.
[3] Rosenman A, Markevich E, Salitra G, et al. Review on Li-sulfur battery systems: an integral perspective[J]. Ad-vanced Energy Materials, 2015,5(16):1500212.
[4] Evers S, Nazar L F. New approaches for high energy density lithium-sulfur battery cathodes[J]. Accounts of Chemical Research, 2013,46(5):1135-1143.
[5] Pope M A, Aksay I A. Structural design of cathodes for Li-S batteries[J]. Advanced Energy Materials, 2015,5(16):1500124.
[6] Wang J L, He Y S, Yang J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries[J]. Advanced Materials, 2015,27(3):569-575.
[7] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012,11(1):19-29.
[8] L. Ma, Zhuang H L L, Wei S Y, et al. Enhanced Li-S batteries using amine-functionalized carbon nanotubes in the cathode[J]. ACS Nano, 2016,10(1):1050-1059.
[9] Fang R P, Zhao S Y, Hou P X, et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries[J]. Advanced Materials, 2016,28(17):3374-3382.
[10] Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009,8(6):500-506.
[11] Ji L W, Rao M M, Aloni S, et al. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells[J]. Energy & Environmental Science, 2011,4(12):5053-5059.
[12] Yao H B, Zheng G Y, Hsu P C, et al. Improving lithium-sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface[J]. Nature Communications, 2014,5:3943.
[13] Tao X Y, Wang J G, Liu C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nature Communications, 2016,7:11203.
[14] Ye H, Yin Y X, Xin S, et al. Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li-S batteries[J]. Journal of Materials Chemistry A, 2013,1(22):6602-6608.
[15] Puthirath A B, Baburaj A, Kato K, et al. High sulfur content multifunctional conducting polymer composite electrodes for stable Li-S battery[J]. Electrochimica Acta, 2019,306:489-497.
[16] Liu X, Huan J Q, Zhang Q, et al. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Advanced Materials, 2017,29(20):1601759.
[17] Yilmaz G, Peh S B, Zhao D, et al. Atomic- and molecular-level design of functional metal-organic frameworks (MOFs) and derivatives for energy and environmental applications[J]. Advanced Science, 2019,6(21):1901129.
[18] Yang H B, Miao J W, Hung S F, et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst[J]. Science Advance, 2016,2(4):e1501122.
[19] Song J X, Xu T, Gordin M L, et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries[J]. Advanced Functional Materials, 2014,24(9):1243-1250.
[20] Zhou G M, Wang D W, Yin L C, et al. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage[J]. ACS Nano, 2012,6(4):3214-3223.
[21] Guo J C, Xu Y H, Wang C S. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries[J]. Nano Letters, 2011,11(10):4288-4294.
[22] Liu J H, Li W F, Duan L M, et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries[J]. Nano Letters, 2015,15(8):5137-5142.
[23] Park S, Lee K S, Bozoklu G, et al. Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking[J]. ACS Nano, 2008,2(3):572-578.
[24] Shen W Z, Ren L W, Zhou H, et al. Facile one-pot synjournal of bimodal mesoporous carbon nitride and its function as a lipase immobilization support[J]. Journal of Materials Chemistry, 2011,21(11):3890-3894.
[25] Biniak S, Szymański G, Siedlewski J, et al. The characterization of activated carbons with oxygen and nitrogen surface groups[J]. Carbon, 1997,35(12):1799-1810.
[26] Yang H B, Miao J W, Hung S F, et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst[J]. Science Advances, 2016,2(4):e1501122.
[27] Chen C, Xu G B, Wei X L. A macroscopic three-dimensional tetrapod-separated graphene-like oxygenated Ndoped carbon nanosheet architecture for use in supercapacitors[J]. Journal of Materials Chemistry A, 2016,4(25):9900-9909.
[28] Pei F, Lin L L, Fu A, et al. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries[J]. Joule, 2017,2(2):323-336.
[29] Zhu L, Jiang H T, Ran W X, et al. Turning biomass waste to a valuable nitrogen and boron dual-doped carbon aerogel for high performance lithium-sulfur batteries[J]. Applied Surface Science, 2019,489:154-164.
[30] Liu J H, Li W F, Duan L M, et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries[J]. Nano Letters, 2015,15(8):5137-5142.
[31] Yamin H, Gorenshtein A, Penciner J, et al. Oxidation/reduction mechanismsof polysulfidesin THF solutions[J]. Journal of Electrochemstry Society, 1988,135(5):1045-1048.
[32] Elazari R, Salitra G, Garsuch A, et al. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries[J]. Advanced Materials, 2011,23(47):5641-5644.
[33] Akridge J R, Mikhaylik Y V, White N. Li/S fundamental chemistry and application to high-performance rechargeable batteries[J]. Solid State Ionics, 2004,175(1/4):243-245.
[34] Nelson J, Misra S, Yang Y. et al. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries[J]. Journal of the American Chemical Society, 2012,134(14):6337-6343.
[35] Jayaprakash N, Shen J, Moganty S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2011,50(26):5904-5908.
[36] Cai J J, Wu C, Zhu Y, et al. Sulfur impregnated N, P co-doped hierarchical porous carbon as cathode for high performance Li-S batteries[J]. Journal of Power Sources, 2017,341:165-174.
[37] Tripathi A K, Verma Y L, Singh R K. Thermal, electrical and structural studies on ionic liquid confined in ordered mesoporous MCM-41[J]. Journal of Materials Chemistry A, 2015,3(47):23809-23820.
[38] Pei F, An T H, Zang J, et al. From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-S batteries[J]. Advanced Energy Materials, 2016,6(8):1502539.
[39] Zheng Z M, Guo H C, Pei F, et al. High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries[J]. Advanced Functional Materials. 2016,26(48):8952-8959.
[40] Chen K, Sun Z H, Fang R P, et al. Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries[J]. Advanced Functional Materials, 2018,28(38):1707592.
[41] Gao X J, Sun Q, Yang X F, et al. Toward a remarkable Li-S battery via 3D printing[J]. Nano Energy, 2019,56:595-603.
[42] Wu P, Chen L H, Xiao S S, et al. Insight into the positive effect of porous hierarchy in S/C cathodes on the electrochemical performance of Li-S batteries[J]. Nanoscale, 2018,10(25):11861-11868.
[43] Zhang H, Gao Q M, Qian W W, et al. Binary hierarchical porous graphene/pyrolytic carbon nanocomposite matrix loaded with sulfur as a high-performance Li-S battery cathode[J]. ACS Applied Materials & Interfaces, 2018,10(22):18726-18733.
[44] Zhong M E, Guan J D, Sun J C, et al. Carbon nanodot-decorated alveolate N, O, S tridoped hierarchical porous carbon as efficient electrocatalysis of polysulfide conversion for lithium-sulfur batteries[J]. Electrochimica Acta, 2019,299:600-609.
[45] Kim J, Kang Y, Song S W, et al. Freestanding sulfur-graphene oxide/carbon composite paper as a stable cathode for high performance lithium-sulfur batteries[J]. Electrochimica Acta, 2019,299:27-33.
[46] Duan L F, Zhao L J, Cong H, et al. Plasma treatment for nitrogen-doped 3D graphene framework by a conductive matrix with sulfur for high-performance Li-S batteries[J]. Small, 2019,15(7):1804347.
[47] Wang S X, Zou K X, Qian Y X, et al. Insight to the synergistic effect of N-doping level and pore structure on improving the electrochemical performance of sulfur/N-doped porous carbon cathode for Li-S batteries[J]. Carbon, 2019,144:745-755.
文章导航

/