欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

有机磷酸酯阻燃电解液的研究进展

  • 曾子琪 ,
  • 艾新平 ,
  • 杨汉西 ,
  • 曹余良
展开
  • 武汉大学化学与分子科学学院,湖北 武汉 430072

收稿日期: 2020-06-29

  修回日期: 2020-08-28

  网络出版日期: 2020-09-17

基金资助

国家重点研发计划课题(2016YFB000200);国家自然科学基金(21972108)

Research Progress of High-Safety Phosphorus-Based Electrolyte

  • Zi-qi ZENG ,
  • Xin-ping AI ,
  • Han-xi YANG ,
  • Yu-liang CAO
Expand
  • College of Chemistry and Molecular Science, Wuhan University, Xiamen University,Wuhan 430072, Hubei, China

Received date: 2020-06-29

  Revised date: 2020-08-28

  Online published: 2020-09-17

摘要

随着锂离子电池的市场拓展,安全性问题已成为电动汽车、大规模储能等应用领域关注的首要问题. 目前商品化的锂离子电池普遍采用低沸点碳酸酯类电解液,其易燃性成为电池不安全性的主要隐患. 为了提高锂离子电池的本征安全性,阻燃或不燃性电解液成为近年来研究的热点,其中以磷酸酯为溶剂的阻燃型或不燃型电解液受到广泛关注. 本文主要介绍磷酸酯阻燃和不燃电解液的研究状况,分析了这类电解液与锂离子电池正负极的兼容性问题,讨论了改善磷酸酯电解液电化学兼容性的途径,提出了发展高效、安全、稳定的不燃电解液的一些思路.

本文引用格式

曾子琪 , 艾新平 , 杨汉西 , 曹余良 . 有机磷酸酯阻燃电解液的研究进展[J]. 电化学, 2020 , 26(5) : 683 -693 . DOI: 10.13208/j.electrochem.200648

Abstract

Lithium-ion batteries (LIBs) have emerged as the most widely used energy storage devices owing to their high energy density and excellent cycling stability. However, safety issues have become a critical obstacle for the large-scale applications of LIBs in the energy storage systems and electric vehicles (EVs). Currently, LIBs use a low flash- and boiling-point organic carbonate as the electrolyte, which is extremely likely to cause firing or explosion. Although some flame-retardant additives can inhibit the combustion of electrolyte to a certain extent, it brings little effect in practical application. Therefore, the development of nonflammable electrolytes is an essential solution to eliminate the safety hazards of LIBs. The phosphorus-based electrolytes seem to be a good choice for flame-retardant or nonflammable electrolytes because of their low viscosity, high solubility, and low cost. In this paper, the problems and solutions of phosphate-based solvents as a safe electrolyte for LIBs are reviewed. Firstly, the feasibility and existing problems of phosphate ester as a solvent of electrolyte are introduced, and then the flame-retardant mechanism, flame-retardant or nonflammable phosphorus-based electrolytes are described by classifications, with emphasis on the electrochemical compatibility of such an electrolyte and its countermeasures. On this basis, we prospect the future research directions in high safety phosphorus-based electrolytes.

参考文献

[1] Kalhoff J, Eshetu G G, Bresser D, et al. Safer electrolytes for lithium-ion batteries: State of the art and perspectives[J]. ChemSusChem, 2015,8(13):2154-2175.
[2] Wu X K, Song K F, Zhang X Y, et al. Safety issues in lithium ion batteries: Materials and cell design[J]. Frontiers in Energy Research, 2019,7:65.
[3] Selman J R, Al Hallaj S, Uchida I, et al. Cooperative research on safety fundamentals of lithium batteries[J]. Journal of Power Sources, 2001, 97-98:726-732.
[4] Fang S H, Qu L, Luo D, et al. Novel mixtures of ether-fun-ctionalized ionic liquids and non-flammable methylperfluorobutylether as safe electrolytes for lithium metal batteries[J]. RSC Advances, 2015,5(43):33897-33904.
[5] Fan X L, Chen L, Borodin O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nature Nanotechnology, 2018,13(8):715-722.
[6] Dalavi S, Xu M Q, Ravdel B, et al. Nonflammable electrolytes for lithium-ion batteries containing dimethylmethylphosphonate[J]. Journal of the Electrochemical Society, 2010,157(10):A1113-A1120.
[7] Xiang H F, Jin Q Y, Chen C H, et al. Dimethyl methylpho-sphonate-based nonflammable electrolyte and high safety lithium-ion batteries[J]. Journal of Power Sources, 2007,174(1):335-341.
[8] Wang X M, Yasukawa E, Kasuya S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental properties[J]. Journal of The Electrochemical Society, 2001,148(10):A1058-A1065.
[9] Xu K, Ding M S, Zhang S S, et al. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes[J]. Journal of The Electrochemical Society, 2002,149(5):A622-A626.
[10] Feng J K, Ma P, Yang H X, et al. Understanding the interactions of phosphonate-based flame-retarding additives with graphitic anode for lithium ion batteries[J]. Electro-chimica Acta, 2013,114:688-692.
[11] Hyung Y E, Vissers D R, Amine K. Flame-retardant additives for lithium-ion batteries[J]. Journal of Power Sour-ces, 2003, 119-121:383-387.
[12] Xu K, Zhang S S, Allen J L, et al. Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate[J]. Journal of The Electrochemical Society, 2002,149(8):A1079-A1082.
[13] Xu K, Zhang S S, Allen J L, et al. Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries: II. Performance in cell[J]. Journal of The Electrochemical Society, 2003,150(2):A170-A175.
[14] Zhang S S, Xu K, Jow T R. Tris(2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries[J]. Journal of Power Sources, 2003,113(1):166-172.
[15] Zeng Z Q, Jiang X Y, Wu B B, et al. Bis(2,2,2-trifluoroethyl) methylphosphonate: An novel flame-retardant additive for safe lithium-ion battery[J]. Electrochimica Acta, 2014,129:300-304.
[16] Zhu X M, Jiang X Y, Ai X P, et al. Bis(2,2,2-Trifluoroethyl) ethylphosphonate as novel high-efficient flame retardant additive for safer lithium-ion battery[J]. Electro-chimica Acta, 2015,165:67-71.
[17] Wu B B, Pei F, Wu Y, et al. An electrochemically compatible and flame-retardant electrolyte additive for safe lithium ion batteries[J]. Journal of Power Sources, 2013,227:106-110.
[18] Nakagawa H, Ochida M, Domi Y, et al. Electrochemical Raman study of edge plane graphite negative-electrodes in electrolytes containing trialkyl phosphoric ester[J]. Journal of Power Sources, 2012,212:148-153.
[19] Feng J K, Sun X J, Ai X P, et al. Dimethyl methyl phosphate: A new nonflammable electrolyte solvent for lithium-ion batteries[J]. Journal of Power Sources, 2008,184(2):570-573.
[20] Wang X M, Yamada C, Naito H, et al. High-concentration trimethyl phosphate-based nonflammable electrolytes with improved charge-discharge performance of a graphite anode for lithium-ion cells[J]. Journal of The Electrochemical Society, 2006,153(1):A135-A139.
[21] Zeng Z Q, Jiang X Y, Li R, et al. A safer sodium-ion battery based on nonflammable organic phosphate electrolyte[J]. Advanced Science, 2016,3(9):1600066.
[22] Zeng Z Q, Wu B B, Xiao L F, et al. Safer lithium ion batteries based on nonflammable electrolyte[J]. Journal of Power Sources, 2015,279:6-12.
[23] Zeng Z Q, Liu X W, Jiang X Y, et al. Enabling an intrinsically safe and high-energy-density 4.5 V-class Li-ion battery with nonflammable electrolyte[J]. InfoMat, 2020, DOI: 10.1002/inf2.12089.
[24] Jiang X Y, Liu X M, Zeng Z Q, et al. A bifunctional fluorophosphate electrolyte for safer sodium-ion batteries[J]. iScience, 2018,10:114-122.
[25] Jiang X Y, Zeng Z Q, Xiao L F, et al. An all-phosphate and zero-strain sodium-ion battery based on Na3V2(PO4)3 cathode, NaTi2(PO4)3 anode, and trimethyl phosphate electrolyte with intrinsic safety and long lifespan[J]. ACS Applied Materials & Interfaces, 2017,9(50):43733-43738.
[26] Liu X W, Jiang X Y, Zhong F P, et al. High-safety symmetric sodium-ion batteries based on nonflammable phosphate electrolyte and double Na3V2(PO4)3 electrodes[J]. ACS Applied Materials & Interfaces, 2019,11(31):27833-27838.
[27] Wang J H, Yamada Y, Sodeyama K, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2018,3(1):22-29.
[28] Chen S R, Zheng J M, Mei D H, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Advanced Materials, 2018,30(21):1706102.
[29] Suo L M, Borodin O, Gao T, et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015,350(6263):938-943.
[30] Yamada Y, Furukawa K, Sodeyama K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. Journal of the American Chemical Society, 2014,136(13):5039-5046.
[31] Yamada Y, Koyama Y, Abe T, et al. Correlation between charge-discharge behavior of graphite and solvation structure of the lithium ion in propylene carbonate-containing electrolytes[J]. The Journal of Physical Chemistry C, 2009,113(20):8948-8953.
[32] Suo L M, Hu Y S, Li H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013,4:2513-2519.
[33] Xiao L F, Zeng Z Q, Liu X W, et al. Stable Li metal anode with “ion-solvent-coordinated” nonflammable electrolyte for safe Li metal batteries[J]. ACS Energy Letters, 2019,4(2):483-488.
[34] Zeng Z Q, Murugesan V, Han K S, et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018,3(8):674-681.
[35] Liu X W, Shen X H, Zhong F P, et al. Enabling electrochemical compatibility of non-flammable phosphate electrolytes for lithium-ion batteries by tuning their molar ratios of salt to solvent[J]. Chemical Communications, 2020,56(48):6559-6562.
[36] Jiang X Y, Liu X W, Zeng Z Q, et al. A nonflammable Na+-based dual-carbon battery with low-cost, high voltage, and long cycle life[J]. Advanced Energy Materials, 2018,8(36):1802176.
[37] Liu X W, Jiang X Y, Zeng Z Q, et al. High capacity and cycle-stable hard carbon anode for nonflammable sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018,10(44):38141-38150.
[38] Shiga T, Kato Y, Kondo H, et al. Self-extinguishing electrolytes using fluorinated alkyl phosphates for lithium batteries[J]. Journal of Materials Chemistry A, 2017,5(10):5156-5162.
[39] Takada K, Yamada Y, Yamada A. Optimized nonflammable concentrated electrolytes by introducing a low-dielectric diluent[J]. ACS Applied Materials & Interfaces, 2019,11(39):35770-35776.
[40] Chen S R, Zheng J M, Yu L, et al. High-efficiency lithium metal batteries with fire-retardant electrolytes[J]. Joule, 2018,2(8):1548-1558.
[41] Cao X, Xu Y B, Zhang L C, et al. Nonflammable electrolytes for lithium ion batteries enabled by ultraconformal passivation interphases[J]. ACS Energy Letters, 2019,4(10):2529-2534.
[42] Yang H J, Guo C, Chen J H, et al. An Intrinsic flame-retardant organic electrolyte for safe lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2019,58(3):791-795.
[43] Chen J H, Yang H J, Zhang X, et al. Highly reversible lithium-metal anode and lithium-sulfur batteries enabled by an intrinsic safe electrolyte[J]. ACS Applied Materials & Interfaces, 2019,11(36):33419-33427.
文章导航

/