锂硫电池多功能涂层隔膜的研究进展与展望
收稿日期: 2020-06-28
修回日期: 2020-08-06
网络出版日期: 2020-08-14
基金资助
国家自然科学基金项目(51772030);北京高校卓越青年科学家计划项目(BJJWZYJH01201910007023)
Progress and Prospects on Multifunctional Coating Separators for Lithium-Sulfur Battery
Received date: 2020-06-28
Revised date: 2020-08-06
Online published: 2020-08-14
先进储能系统的开发对于满足电动汽车、便携式设备和可再生能源存储不断增长的需求至关重要. 锂硫(Li-S)电池具有比能量高、原材料成本低和环境友好等优点,是新型高性能电池研究领域中的热点. 然而,锂硫电池面向实际应用还存在许多问题,如可溶性多硫化物中间体的穿梭效应、锂枝晶生长以及锂硫电池在使用过程中的热稳定性和安全性等. 设计开发多功能涂层隔膜是改善锂硫电池上述不足的有效策略之一,在本综述中,详细论述了锂硫电池多功能涂层隔膜的研究进展. 包括聚合物材料、碳材料、氧化物材料、催化纳米粒子改性的功能化涂层隔膜及增强电池热稳定性、安全性的特种功能隔膜,对其作用特性进行了系统分析,并对未来研究发展提出展望.
魏壮壮 , 张楠祥 , 吴锋 , 陈人杰 . 锂硫电池多功能涂层隔膜的研究进展与展望[J]. 电化学, 2020 , 26(5) : 716 -730 . DOI: 10.13208/j.electrochem.200647
The development of advanced energy storage systems is crucial to meet the growing demand for electric vehicles, portable devices and renewable energy storage. Lithium-sulfur (Li-S) batteries, with their advantages of high specific energy, low cost of raw materials and environmental friendliness, are hotspots in the research field of new high performance batteries. However, there are still many problems which hinder the practical applications of lithium-sulfur batteries, such as the shuttle effect of soluble polysulfide intermediates, the growth of lithium dendrites, and the thermal stability and safety of lithium-sulfur batteries during use. The design of multifunctional coating separator is one of the effective strategies to improve the above deficiencies of lithium-sulfur batteries. In this review, the research progress of multifunctional coating separators for lithium-sulfur batteries is discussed in detail, which include polymer materials, carbon materials, oxide materials, functionalized coating separators modified by catalytic nanoparticles and special functional separators to enhance the thermal stability and safety of the battery. The characteristics of its function are systematically analyzed, and the future research and development are also prospected.
[1] | Hu X S, Zou C F, Zhang C P, et al. Technological developments in batteries: a survey of principal roles, types, and management needs[J]. IEEE Power and Energy Magazine, 2017,15(5):20-31. |
[2] | Lin D C, Liu Y Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017,12(3):194-206. |
[3] | Li G R, Cai W L, Liu B H, et al. A multifunctional binder with lithium ion conductive polymer and polysulfide absorbents to improve cycleability of lithium-sulfur batteries[J]. Journal of Power Sources, 2015,294:187-192. |
[4] | Cuisinier M, Cabelguen P E, Adams B D, et al. Unique behaviour of nonsolvents for polysulphides in lithium-sulphur batteries[J]. Energy & Environmental Science, 2014,7(8):2697-2705. |
[5] | Liu Y D, Liu Q, Xin L, et al. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction[J]. Nature Energy, 2017,2(7):17083. |
[6] | Cao R G, Chen J Z, Han K S, et al. Effect of the anion activity on the stability of Li metal anodes in lithium-sulfur batteries[J]. Advanced Functional Materials, 2016,26(18):3059-3066. |
[7] | Wang Q S, Ping P, Zhao X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012,208:210-224. |
[8] | Li H, Wu D B, Wu J, et al. Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries[J]. Advanced Materials, 2017,29(44):1703548. |
[9] | Yan B, Li X F, Bai Z M, et al. A review of atomic layer deposition providing high performance lithium sulfur batteries[J]. Journal of Power Sources, 2017,338:34-48. |
[10] | Peng H J, Huang J Q, Cheng X B, et al. Review on high-loading and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017,7(24):1700260. |
[11] | Pang Q, Liang X, Kwok C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nature Energy, 2016,1(9):16132. |
[12] | Li S Y, Wang W P, Duan H, et al. Recent progress on confinement of polysulfides through physical and chemical methods[J]. Journal of Energy Chemistry, 2018,27(6):1555-1565. |
[13] | Zhuang T Z, Huang J Q, Peng H J, et al. Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries[J]. Small, 2016,12(3):381-389. |
[14] | Bauer I, Thieme S, Brückner J, et al. Reduced polysulfide shuttle in lithium-sulfur batteries using Nafion-based separators[J]. Journal of Power Sources, 2014,251:417-422. |
[15] | Rana M, Li M, He Q, et al. Separator coatings as efficient physical and chemical hosts of polysulfides for high-sulfur-loaded rechargeable lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2020,44:51-60. |
[16] | Wu F, Ye Y S, Chen R J, et al. Systematic effect for an ultralong cycle lithium-sulfur battery[J]. Nano letters, 2015,15(11):7431-7439. |
[17] | Chang C H, Chung S H, Manthiram A. Ultra-lightweight PANiNF/MWCNT-functionalized separators with synergistic suppression of polysulfide migration for Li-S batteries with pure sulfur cathodes[J]. Journal of Materials Chemistry A, 2015,3(37):18829-18834. |
[18] | Duan L, Lu J C, Liu W Y, et al. Fabrication of conductive polymer-coated sulfur composite cathode materials based on layer-by-layer assembly for rechargeable lithium-sulfur batteries[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012,414:98-103. |
[19] | Ma G Q, Huang F F, Wen Z Y, et al. Enhanced performance of lithium sulfur batteries with conductive polymer modified separators[J]. Journal of Materials Chemistry A, 2016,4(43):16968-16974. |
[20] | Shi L, Zeng F L, Cheng X, et al. Enhanced performance of lithium-sulfur batteries with high sulfur loading utilizing ion selective MWCNT/SPANI modified separator[J]. Chemical Engineering Journal, 2018,334:305-312. |
[21] | Vizintin A, Lozinsek M, Patel M U M, et al. A selective ion transport by application of the functionalized rGO as the separator in Li-S batteries[C] //The Electrochemical Society, 17th International Meeting on Lithium Batteries (IMLB) Como, Italy, June 10-14, 2014. ECS Meeting Abstracts. IOP Publishing, 2014,3:514. |
[22] | G. M, Li Zhou L, Wang D W, et al. A flexible sulfur-grap-hene-polypropylene separator integrated electrode for advanced Li-S batteries[J]. Advanced Materials, 2015,27(4):641-647. |
[23] | Chen G P, Song X, Wang S Q, et al. A multifunctional separator modified with cobalt and nitrogen co-doped porous carbon nanofibers for Li-S batteries[J]. Journal of Membrane Science, 2018,548:247-253. |
[24] | Pang Y, Wei J S, Wang Y G, et al. Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium-sulfur batteries[J]. Advanced energy materials, 2018,8(10):1702288. |
[25] | Chung S H, Manthiram A. Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries[J]. Advanced Functional Materials, 2014,24(33):5299-5306. |
[26] | Zhou X Y, Liao Q C, Tang J J, et al. A high-level N-doped porous carbon nanowire modified separator for long-life lithium-sulfur batteries[J]. Journal of Electroanalytical Chemistry, 2016,768:55-61. |
[27] | Zhai P Y, Peng H J, Cheng X B, et al. Scaled-up fabrication of porous-graphene-modified separators for high - capacity lithium-sulfur batteries[J]. Energy Storage Materials, 2017,7:56-63. |
[28] | Wu F, Qian J, Chen R J, et al. Light-weight functional layer on a separator as a polysulfide immobilizer to enhance cycling stability for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2016,4(43):17033-17041. |
[29] | Chung S H, Manthiram A. High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator[J]. The Journal of Physical Chemistry Letters, 2014,5(11):1978-1983. |
[30] | Hong X D, Li S L, Tang X N, et al. Self-supporting porous CoS2/rGO sulfur host prepared by bottom-up assembly for lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2018,749:586-593. |
[31] | Zhang H, Tian D X, Zhao Z B, et al. Cobalt nitride nanoparticles embedded in porous carbon nanosheet arrays propelling polysulfides conversion for highly stable lithium-sulfur batteries[J]. Energy Storage Materials, 2019,21:210-218. |
[32] | Chen X X, Ding X Y, Wang C S, et al. A multi-shelled CoP nanosphere modified separator for highly efficient Li-S batteries[J]. Nanoscale, 2018,10(28):13694-13701. |
[33] | Wei L, Li W L, Zhao T, et al. Cobalt nanoparticles shielded in N-doped carbon nanotubes for high areal capacity Li-S batteries[J]. Chemical Communications, 2020,56(20):3007-3010. |
[34] | Balach J, Jaumann T, Klose M, et al. Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries[J]. Advanced Functional Materials, 2015,25(33):5285-5291. |
[35] | Li W L, Ye Y S, Qian J, et al. Oxygenated nitrogen-doped microporous nanocarbon as a permselective interlayer for ultrastable lithium-sulfur batteries[J]. ChemElectroChem, 2019,6(4):1094-1100. |
[36] | Wu H W, Huang Y, Zhang W C, et al. Lock of sulfur with carbon black and a three-dimensional graphene@carbon nanotubes coated separator for lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2017,708:743-750. |
[37] | Zhang Z Y, Lai Y Q, Zhang Z A, et al. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries[J]. Electrochimica Acta, 2014,129:55-61. |
[38] | Kong W B, Yan L J, Luo Y F, et al. Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li-S batteries[J]. Advanced Functional Materials, 2017,27(18):1606663-1606674. |
[39] | Yang Z Z, Wang H Y, Lu L, et al. Hierarchical TiO2 spheres as highly efficient polysulfide host for lithium-sulfur batteries[J]. Scientific Reports, 2016,6:22990-22998. |
[40] | Qian X Y, Zhao D, Jin L, et al. Hollow spherical lanthanum oxide coated separator for high electrochemical performance lithium-sulfur batteries[J]. Materials Resear-ch Bulletin, 2017,94:104-112. |
[41] | Guan Y B(官亦标), Li W L(李万隆), Xie X Y(谢潇怡), et al. Preparation of TiO2/CNTs composite coated separator and its application in Li-S battery[J]. Chemical Journal of Chinese Universities-Chinese (高等学校化学学报), 2019,40(3):536-541. |
[42] | Raja M, Kumar T P, Sanjeev G, et al. Montmorillonite-based ceramic membranes as novel lithium-ion battery separators[J]. Ionics, 2014,20(7):943-948. |
[43] | Ahn W, Lim S N, Lee D U, et al. Interaction mechanism between a functionalized protective layer and dissolved polysulfide for extended cycle life of lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2015,3(18):9461-9467. |
[44] | Zhao Y, Liu M, Lv W, et al. Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium-sulfur battery[J]. Nano Energy, 2016,30:1-8. |
[45] | Qian D N, Xu B, Cho H M, et al. Lithium lanthanum titanium oxides: a fast ionic conductive coating for lithium-ion battery cathodes[J]. Chemistry of Materials, 2012,24(14):2744-2751. |
[46] | Feng G L, Liu X H, Liu Y N, et al. Trapping polysulfides by chemical adsorption barrier of LixLayTiO3 for enhanced performance in lithium-sulfur batteries[J]. Electrochimica Acta, 2018,283:894-903. |
[47] | Zeng P, Huang L W, Zhang X L, et al. Inhibiting polysulfides diffusion of lithium-sulfur batteries using an acetylene black-CoS2 modified separator: mechanism research and performance improvement[J]. Applied Surface Science, 2018,427:242-252. |
[48] | Li W L, Qian J, Zhao T, et al. Boosting high-rate Li-S batteries by an MOF-derived catalytic electrode with a layer-by-layer structure[J]. Advanced Science, 2019,6(16):1802362. |
[49] | Ye Z Q, Jiang Y, Feng T, et al. Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries[J]. Nano Energy, 2020,70:104532. |
[50] | Du Z Z, Guo C K, Wang L J, et al. Atom-thick interlayer made of CVD-grown graphene film on separator for advanced lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2017,9(50):43696-43703. |
[51] | Zhu B, Jin Y, Hu X Z, et al. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes[J]. Advanced Materials, 2017,29(2):1603755. |
[52] | Xiang Y Y, Wang Z, Qiu W J, et al. Interfacing soluble polysulfides with a SnO2 functionalized separator: An efficient approach for improving performance of Li-S battery[J]. Journal of Membrane Science, 2018,563:380-387. |
[53] | Zhang Y G, Wang Y G, Luo R J, et al. A 3D porous FeP/rGO modulated separator as a dual-function polysulfide barrier for high-performance lithium sulfur batteries[J]. Nanoscale Horizons, 2020,5(3):530-540. |
[54] | Sun Z H, Wang T, Zhang Y G, et al. Boosting the electrochemical performance of lithium/sulfur batteries with the carbon nanotube/Fe3O4 coated by carbon modified separator[J]. Electrochimica Acta, 2019, 327: UNSP134843. |
[55] | Xie X S, Liang S Q, Gao J W, et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes[J]. Energy & Environmental Science, 2020,13(2):503-510. |
[56] | Zhang R, Chen X R, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition, 2017,56(27):7764-7768. |
[57] | Luo J, Fang C C, Wu N L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes[J]. Advanced Energy Materials, 2018,8(2):1701482. |
[58] | Ye Y, Wang L, Guan L L, et al. A modularly-assembled interlayer to entrap polysulfides and protect lithium metal anode for high areal capacity lithium-sulfur batteries[J]. Energy Storage Materials, 2017,9:126-133. |
[59] | Lu Q, Zou X H, Ran R, et al. An “electronegative” bifunctional coating layer: simultaneous regulation of polysulfide and Li-ion adsorption sites for long-cycling and “dendrite-free” Li-S batteries[J]. Journal of Materials Chemistry A, 2019,7(39):22463-22474. |
[60] | Wang L L, Fu S Y, Zhao T, et al. In situ formation of a LiF and Li-Al alloy anode protected layer on a Li metal anode with enhanced cycle life[J]. Journal of Materials Chemistry A, 2020,8(3):1247-1253. |
[61] | Wang Q S, Ping P, Zhao X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012,208:210-224. |
[62] | Song J, Ryou M H, Son B, et al. Co-polyimide-coated polyethylene separators for enhanced thermal stability of lithium ion batteries[J]. Electrochimica acta, 2012,85:524-530. |
[63] | Song R S, Fang R P, Wen L, et al. A trilayer separator with dual function for high performance lithium-sulfur batteries[J]. Journal of Power Sources, 2016,301:179-186. |
[64] | Lee H, Ren X D, Niu C J, et al. Suppressing lithium dendrite growth by metallic coating on a separator[J]. Advanced Functional Materials, 2017,27(45):1704391. |
[65] | Ji W X, Jiang B L, Ai F X, et al. Temperature-responsive microspheres-coated separator for thermal shutdown protection of lithium ion batteries[J]. RSC Advances, 2015,5(1):172-176. |
[66] | Huang X Y, Xue J J, Xiao M, et al. Comprehensive evaluation of safety performance and failure mechanism analysis for lithium sulfur pouch cells[J]. Energy Storage Materials, 2020,30:87-97. |
/
〈 |
|
〉 |