电化学方法调控荧光碳点的研究
收稿日期: 2020-06-30
修回日期: 2020-08-02
网络出版日期: 2020-08-19
Electrochemical Engineering of Carbon Nanodots
Received date: 2020-06-30
Revised date: 2020-08-02
Online published: 2020-08-19
作为零维碳基发光纳米材料,碳点是对现有发光纳米材料的重要补充. 精准控制粒径及表面结构对实现碳点的性质调控及其应用至关重要. 本文介绍了本课题组在利用电化学方法研究荧光碳点方面的进展. 重点展示了利用电化学方法实现对碳点粒径的控制,对表面氧化程度的调节以及对其发光机理的研究. 电化学方法可对只有几纳米厚度的材料表面进行有效的控制,可操作性强且经济环保. 通过对碳点的粒径及表面的调控,作者也进一步揭示了碳点的发光与表面结构的相关性. 这些工作为碳点的合成及其性质调控提供了可循的规律,有利于推动碳点在生物医生成像、传感检测、催化及能源转化等领域的应用.
包蕾 , 庞代文 . 电化学方法调控荧光碳点的研究[J]. 电化学, 2020 , 26(5) : 639 -647 . DOI: 10.13208/j.electrochem.200644
Carbon nanodots (CNDs), as zero-dimensional carbonaceous fluorescent nanomaterials, are valuable add-ons to the current cohorts of fluorescent nanoparticles. The fine control over the size and the surface is the key to gain designated photophysical properties of CNDs as well as empowers CNDs in many applications. Herein, a series of electrochemical strategies to manipulate the size and the surface of CNDs and to identify the surface structures was presented. Accordingly, the understandings on the originals of photoluminescence as well as the pathways of electrochemiluminescence of CNDs were revealed. These studies demonstrated that electrochemical methods were easy to operate, cost-effective and efficient in altering thin layers of the surface on CNDs within a few nanometers. The key findings in the luminescence mechanism provided guidelines for the rational design of CNDs with suitable features, which could promote applications of CNDs in bioimaging, sensing and catalytic conversion.
[1] | Chandra S, Das P, Bag S, et al. Synjournal, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles[J]. Nanoscale, 2011,3(4):1533-1540. |
[2] | Sun Y P, Yang S T, Wang X, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. The Journal of Physical Chemistry C, 2009,113(42):18110-18114. |
[3] | Yang S T, Cao l, Sun Y P, et al. Carbon dots for optical imaging in vivo[J]. Journal of the American Chemical Society, 2009,131(32):11308-11309. |
[4] | Xu X Y, Ray R, Gu YL, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004,126(40):12736-12737. |
[5] | Liu C, Bao L, Tang B, et al. Fluorescence-converging carbon nanodots—hybridized silica nanosphere[J]. Small, 2016,12(34):4702-4706. |
[6] | Shi L H, Zhao B, Li X F, et al. Green-fluorescent nitrogen-doped carbon nanodots for biological imaging and paper-based sensing[J]. Analytical Methods, 2017,9(14):2197-2204. |
[7] | Jiang K, Sun S, Zhang L, et al. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging[J]. Angewandte Chemie International Edition, 2015,54(18):5360-5363. |
[8] | Liu C, Tang B, Zhang S, et al. Photoinduced electron transfer mediated by coordination between carboxyl on carbon nanodots and Cu2+ quenching photoluminescence[J]. The Journal of Physical Chemistry C, 2018,122(6):3662-3668. |
[9] | Kong B, Zhu A W, Ding CQ, et al. Carbon dot-based inorganic-organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues[J]. Advanced Materials, 2012,24:5844-5848. |
[10] | Shi W, Li X H, Ma H M, et al. A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells[J]. Angewandte Chemie International Edition, 2012,51(26):6432-6435. |
[11] | Yuan F L, Yuan T, Sui L Z, et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs[J]. Natural Communications, 2018,9:2249. |
[12] | Cao L, Sahu S, Anilkumar P, et al. Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond[J]. Journal of the American Chemical Society, 2011,133(13):4754-4757. |
[13] | Li H T, He X D, Kang Z H, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angewandte Chemie International Edition, 2010,49(26):4430-4434. |
[14] | Shinde B D, Pillai V K. Electrochemical resolution of multiple redox events for graphene quantum dots[J]. Angewandte Chemie International Edition, 2013,52(9):2482-2485. |
[15] | Li L L, Ji J, Fei R, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots[J]. Advanced Functional Materials, 2012,22(14):2971-2979. |
[16] | Li Y, Hu Y, Zhao Y, et al. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Advanced Materials, 2011,23(6):776-780. |
[17] | Li L L, Wu G H, Yang G H, et al. Focusing on luminescent graphene quantum dots: Current status and future perspectives[J]. Nanoscale, 2013,5(10):4015-4039. |
[18] | Zhu S J, Zhang J H, Tang S J, et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications[J]. Advanced Functional Materials, 2012,22:4732-4740. |
[19] | Peng J, Gao W, Gupta B K, et al. Graphene quantum dots derived from carbon fibers[J]. Nano Letters, 2012,12(2):844-849. |
[20] | Feng, T L, Zhu S J, Zeng Q S, et al. Supramolecular cross-link-regulated emission and related applications in polymer carbon dots[J]. ACS Applied Materials & Interfaces, 2018,10(15):12262-12277. |
[21] | Ding C Q, Zhu A W, Tian Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging[J]. Accounts of Chemical Research, 2014,47(1):20-30. |
[22] | Hu C(胡超), Mu Y(穆野), Li M Y(李明宇), et al. Recent advances in the synjournal and applications of carbon dots[J]. Acta Physico - Chimica Sinica (物理化学学报), 2019,35(6):572-590. |
[23] | Hola K, Zhang Y, Wang Y, et al. Carbon dots—emerging light emitters for bioimaging, cancer therapy and optoelectronics[J]. Nano Today, 2014,9(5):590-603. |
[24] | Fernando K A S, Sahu S, Liu Y M, et al. Carbon quantum dots and applications in photocatalytic energy conversion[J]. ACS Applied Materials & Interfaces, 2015,7(16):8363-8376. |
[25] | Zheng X T, Ananthanarayanan A, Luo K Q, et al. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications[J]. Small, 2015,11(14):1620-1636. |
[26] | Liang W X, Bunker C E, Sun Y P. Carbon dots: Zero-dimensional carbon allotrope with unique photoinduced redox characteristics[J]. ACS Omega, 2020,5(2):965-971. |
[27] | Long Y M, Zhao Q L, Zhang Z L, et al. Electrochemical methods—important means for fabrication of fluorescent nanoparticles[J]. Analyst, 2012,137(4):805-815. |
[28] | Qi B P, Bao L, Zhang Z L, et al. Electrochemical methods to study photoluminescent carbon nanodots: Preparation, photoluminescence mechanism and sensing[J]. ACS Applied Materials & Interfaces, 2016,8(42):28372-28382. |
[29] | Qi B P(齐宝平), Bao L(包蕾), Long Y M(龙艳敏), et al. Study on the fluorescent carbon nanodots with electrochemical methods[J]. Journal of Electrochemistry (电化学), 2011,17(3):271-276. |
[30] | Zhao Q L, Zhang Z L, Pang D W, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by ele-ctrooxidation of graphite[J]. Chemical Communications, 2008,41:5116-5118. |
[31] | Lu J, Yang J X, Wang J Z, et al. One-pot synjournal of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids[J]. ACS Nano, 2009,3(8):2367-2375. |
[32] | Zhou J G, Booker C, Li R Y, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs)[J]. Journal of the American Chemical Society, 2007,129(4):744-745. |
[33] | Bao L, Zhang Z L, Tian Z Q, et al. Electrochemical tuning of luminescent carbon nanodots: From preparation to luminescence mechanism[J]. Advanced Materials, 2011,23(48):5801-5806. |
[34] | Long Y M, Zhou C H, Zhang Z L, et al. Shifting and non-shifting fluorescence emitted by carbon nanodots[J]. Journal of Materials Chemistry, 2012,22(13):5917-5920. |
[35] | Qi B P, Hu H, Bao L, et al. An efficient edge-functionalization method to tune the photoluminescence of graphene quantum dots[J]. Nanoscale, 2015,7(14):5969-5973. |
[36] | Chen Y, Cao Y, Ma C, et al. Carbon-based dots for electrochemiluminescence sensing[J]. Materials Chemistry Frontiers, 2020,4(2):369-385. |
[37] | Long Y M, Bao L, Zhao J Y, et al. Revealing carbon nanodots as coreactants of the anodic electrochemiluminescence of Ru(bpy)32+[J]. Analytical Chemistry, 2014,86(15):7224-7228. |
[38] | Long Y M, Bao L, Peng Y, et al. Self-co-reactant and ion-annihilation electrogenerated chemiluminescence of carbon nanodots[J]. Carbon, 2018,129:168-174. |
[39] | Bao L, Liu C, Zhang Z L, et al. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning[J]. Advanced Materials, 2015,27(10):1663-1667. |
[40] | Liu C, Bao L, Yang M L, et al. Surface sensitive photoluminescence of carbon nanodots: Coupling between the carbonyl group and π-electron system[J]. The Journal of Physical Chemistry Letters, 2019,10(13):3621-3629. |
/
〈 |
|
〉 |