欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

紫罗碱衍生物分子结的电学性质理论研究

  • 蔡转运 ,
  • 刘佳 ,
  • 关思远 ,
  • 吴德印 ,
  • 田中群
展开
  • 厦门大学化学化工学院化学系,固体表面物理化学国家重点实验室,福建 厦门 361005
* Tel: (86-592)2189023, E-mail: dywu@xmu.edu.cn

收稿日期: 2020-06-21

  修回日期: 2020-07-15

  网络出版日期: 2020-07-16

基金资助

国家自然科学基金项目(21533006);国家自然科学基金项目(21621091);国家自然科学基金项目(21773197);福建省创新人才

Theoretical Study on Electrical Properties of Molecular Junctions of Viologen Derivatives

  • Zhuan-Yun Cai ,
  • Jia Liu ,
  • Si-Yuan Guan ,
  • De-Yin Wu ,
  • Zhong-Qun Tian
Expand
  • Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2020-06-21

  Revised date: 2020-07-15

  Online published: 2020-07-16

摘要

本文基于密度泛函(DFT)结合非平衡格林函数(NEGF)的方法,以具有氧化还原中心的紫罗碱衍生物(N,N′-bis(4-thioalkyl)-4,4′-bipyridinium, HS-4V4-SH)功能分子构造Au(111)/S-4V4-S/Au(111)分子结,详细分析了分子在三种价态V、V+和V2+下的电学性质与分子的几何结构和电子结构的关系。基于对三种价态透射系数分析结果表明,在零偏压下,V与V+的电导值比V2+高了两个数量级,4V4分子结的电导随两个吡啶环之间夹角的增大呈线性减小。同时,理论计算结果也表明,增加烷基链(HS-nVn-SH, n = 2 ~ 7)的数目,发现分子结电导值呈指数形式衰减,其每个亚甲基的衰减因子约为1,与烷基二硫醇分子的接近。

本文引用格式

蔡转运 , 刘佳 , 关思远 , 吴德印 , 田中群 . 紫罗碱衍生物分子结的电学性质理论研究[J]. 电化学, 2021 , 27(1) : 92 -99 . DOI: 10.13208/j.electrochem.200621

Abstract

In this paper, the electrical properties of molecular junctions formed N,N′-bis(4-thioalkyl)-4,4′-bipyridinium (viologen) moiety between two gold (Au) electrodes have been investigated by combining density functional theory and non-equilibrium Green’s functional approach. To modulate the viologen molecule to be a cation with one and two positive charges (V+ and V2+), we introduce one and two trifluoroacetic acid ions (TFA-) around the molecule, respectively. The valence states of V+ and V2+ are confirmed by checking Mulliken and NBO charges. Then the relationship between molecular conductance and electronic structures of the neutral state V, the radical state V+ and dication V2+ are analyzed in detail. The results in analyzing transmission spectra of the three states reveal that the conductance values of V and V+ are two orders of magnitude larger than that of V2+. This suggests that the redox states of viologen molecules can be used to realize the function of molecular switches. Our calculated results also show that increasing the torsion angle between two pyridine rings of the S-4V4-S molecule will decrease the conductance. By comparing different ions of TFA、PF6 and BF4, the calculated results show that the molecular junction conductance decreases about 3 times when the torsion angle increases by about 6°. It indicates that increasing the torsion angle of the dication V2+ can improve significantly switching ratio of viologen derivatives molecules. At the same time, the calculated results show that increasing the number of methylene groups in alky chains (HS-nVn-SH, n = 2 ~ 7), the conductance values of molecular junctions decrease exponentially, and the attenuation factor of each methylene is about 1 close to alkanedithiol molecules in literatures experimentally and theoretically. This also shows that as the alkyl chain length increases, the DFT-NEGF theoretical method can better predict the zero-bias conductance of the viologen derivative molecule.

参考文献

[1] Moore G E. Cramming more components onto integrated circuits[J]. Electronics, 1965,38(8):114-117.
[2] Jia C C, Ma B J, Xin N, Guo X F. Carbon electrode-molecule junctions: A reliable platform for molecular electronics[J]. Acc. Chem. Res., 2015,48(9):2565-2575.
[3] Aviram A, Ratner M A. Molecular rectifiers[J]. Chem. Phys. Lett., 1974,29(2):277-283.
[4] Xin N, Guan J X, Zhou C G, et al. Concepts in the design and engineering of single-molecule electronic devices[J]. Nat. Rev. Phys., 2019,1(3):211-230.
[5] Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yan Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity[J]. Science, 2016,352(6292):1443-1445.
[6] Tan Z B, Zhang D, Tian H R, Wu Q Q, Hou S J, Pi J C, Sadeghi H, Tang Z, Yang Y, Liu J Y, Tan Y Z, Chen Z B, Shi J, Xiao Z Y, Lambert C, Xie S Y, Hong W J. Atomically defined angstrom-scale all-carbon junctions[J]. Nat. Commun., 2019,10(1):1748.
[7] Yang Y(杨扬), Liu J Y(刘俊扬), Yan R W(晏润文), Wu D Y(吴德印), Tian Z Q(田中群). Mechanism and characterization of electron transport through metal/molecule/metal junctions[J]. Chem. J. Chin. Univ.-Chin. (高等学校化学学报), 2015,36(1):9-23.
[8] Qi Y H, Guan D R, Liu C B. DFT study of the transport properties of molecular wire at low bias[J]. Chin. J. Chem., 2006,24(3):326-330.
[9] He Y Y(贺园园), Zhao J W(赵健伟). Effects of conformational transformations on electronic transport properties of optical molecular switches: An ab initio study[J]. J. Electrochem. (电化学), 2014,20(3):243-259.
[10] Zhou C, Li X X, Gong Z L, Jia C C, Lin Y W, Gu C H, He G, Zhong Y W, Yang J L, Guo X F. Direct observation of single-molecule hydrogen-bond dynamics with single-bond resolution[J]. Nat. Commun., 2018,9(1):807.
[11] J?ckel F, Watson M D, Müllen K, Rabe J P. Prototypical single-molecule chemical-field-effect transistor with nanometer-sized gates[J]. Phys. Rev. Lett., 2004,92(18):188303.
[12] Liu B, Blaszczyk A, Mayor M, Wandlowski T. Redox-switching in a viologen-type adlayer: An electrochemical shell-isolated nanoparticle enhanced raman spectroscopy study on Au(111)-(1×1) single crystal electrodes[J]. ACS Nano, 2011,5(7):5662-5672.
[13] Li J H, Cheng G J, Dong S J. Electrochemical study of the interfacial characteristics of redox-active viologen thiol self-assembled monolayers[J]. Thin Solid Films, 1997,293(1):200-205.
[14] Osorio H M, Martín S, Milan D C, Gonzalez-Orive A, Gluyas JBG, Higgins S J, Low P J, Nichols R J, Cea P. Influence of surface coverage on the formation of 4,4′-bipyridinium (viologen) single molecular junctions[J]. J. Mater. Chem. C, 2017,5(45):11717-11723.
[15] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, revision D. 01[M]. Wallingford, CT; Gaussian, Inc., Wallingford CT, 2009.
[16] Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys., 1993,98(7):5648-5652.
[17] Krishnan R, Binkley J S, Seeger R, Pople J A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions[J]. J. Chem. Phys., 1980,72(1):650-654.
[18] McLean A D, Chandler G S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18[J]. J. Chem. Phys., 1980,72(10):5639-5648.
[19] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev., 1965,140(4A):A1133-A1138.
[20] Calais J L. Density-functional theory of atoms and mole-cules[J]. Int. J. Quantum Chem., 1993,47(1):101-101.
[21] Becke A D. Perspective: Fifty years of density-functional theory in chemical physics[J]. J. Chem. Phys. , 2014,140(18):18A301.
[22] Thygesen K S. Electron transport through an interacting region: The case of a nonorthogonal basis set[J]. Phys. Rev. B , 2006,73(3):035309.
[23] Gruss D, Velizhanin K A, Zwolak M. Landauer's formula with finite-time relaxation: Kramers' crossover in electronic transport[J]. Sci. Rep., 2016,6:24514-24514.
[24] Ernzerhof M, Perdew J P. Generalized gradient approximation to the angle- and system-averaged exchange hole[J]. J. Chem. Phys., 1998,109(9):3313-3320.
[25] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys. Rev. B, 1992,46(11):6671-6687.
[26] Becke A D. Density functional calculations of molecular bond energies[J]. J. Chem. Phys., 1986,84(8):4524-4529.
[27] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys. Rev. A, 1988,38(6):3098-3100.
[28] Hoft R, Ford M, García-Suárez V, Lambert C J. The effect of stretching thiyl- and ethynyl-Au molecular junctions[J]. J. Phys.-Condes. Matter , 2007,20(2):025207.
[29] Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices[J]. Phys. Rev. B, 2001,63(24):245407.
[30] Meir Y, Wingreen N S. Landauer formula for the current through an interacting electron region[J]. Phys. Rev. Lett., 1992,68(16):2512-2515.
[31] Kim Y H, Tahir-Kheli J, Schultz P A, Goddard W A. First-principles approach to the charge-transport characteristics of monolayer molecular-electronics devices: Application to hexanedithiolate devices[J]. Phys. Rev. B, 2006,73(23):235419.
[32] Landauer R, Martin T. Barrier interaction time in tunneling[J]. Rev. Mod. Phys., 1994,66(1):217-228.
[33] Datta S. Quantum transport: atom to transistor[M]. Cambridge university press, 2005.
[34] Haiss W, van Zalinge H, Higgins S J, Bethell D, Hobenreich H, Schiffrin D J, Nichols R J. Redox state dependence of single molecule conductivity[J]. J. Am. Chem. Soc., 2003,125(50):15294-15295.
[35] Magoga M, Joachim C. Conductance and transparence of long molecular wires[J]. Phys. Rev. B, 1997,56(8):4722-4729.
[36] Samanta M P, Tian W, Datta S, Kubiak C P. Electronic conduction through organic molecules[J]. Phys. Rev. B, 1996,53(12):R7626-R7629.
[37] Li Z, Pobelov I, Han B, Wandlowski T, Blaszczyk A, Mayor M. Conductance of redox-active single molecular junctions: an electrochemical approach[J]. Nanotechnology, 2006,18(4):044018.
[38] Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F. Charge transport in single Au | alkanedithiol | Au junctions: coordination geometries and conformational degrees of freedom[J]. J. Am. Chem. Soc., 2008,130(1):318-326.
[39] Xu B, Tao N J. Measurement of single-molecule resistance by repeated formation of molecular junctions[J]. Science, 2003,301(5637):1221.
[40] Li X L, He J, Hihath J, Xu B Q, Lindsay S M, Tao N J. Conductance of single alkanedithiols: Conduction mechanism and effect of molecule-electrode contacts[J]. J. Am. Chem. Soc., 2006,128(6):2135-2141.
[41] Guo S, Hihath J, Díez-Pérez I, Tao N J. Measurement and statistical analysis of single-molecule current-voltage characteristics, transition voltage spectroscopy, and tunneling barrier height[J]. J. Am. Chem. Soc., 2011,133(47):19189-19197.
[42] Yan R W, Jin X, Guan S Y, Zhang X G, Pang R, Tian Z Q, Wu D Y, Mao B W. Theoretical study of quantum conductance of conjugated and nonconjugated molecular wire junctions[J]. J. Phys. Chem. C, 2016,120(22):11820-11830.
文章导航

/