欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

二硒化钼纳米球储锂和储镁的性能和机理研究

  • 彭依 ,
  • 张伟 ,
  • 左防震 ,
  • 吕浩莹 ,
  • 洪凯骏
展开
  • 1.中国电子科技集团公司第三十八研究所,安徽 合肥 230088
    2.中国科学技术大学管理学院,安徽 合肥 230026
    3.武汉理工大学材料科学与工程学院,湖北 武汉 430070
* Tel:(86)15156814299, E-mail: py15156814299@163.com

收稿日期: 2020-05-11

  修回日期: 2020-06-12

  网络出版日期: 2020-07-14

Storage Performance and Mechanism of MoSe2 Nanospheres in Lithium and Magnesium Ion Batteries

  • Yi Peng ,
  • Wei Zhang ,
  • Fang-Zhen Zuo ,
  • Hao-Ying Lü ,
  • Kai-Jun Hong
Expand
  • 1. No.38 Research Institute, China Electronics Technology Group Corporation, Hefei 230088, Anhui, China
    2. School of Management, University of Science and Technology of China, Hefei 230026, Anhui, China
    3. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China

Received date: 2020-05-11

  Revised date: 2020-06-12

  Online published: 2020-07-14

摘要

二硒化钼是一种二维过渡金属硫族化合物材料,凭借其具有较快的离子迁移率、较弱的范德华力的层状结构,在锂离子电池的应用研究中吸引了广泛的关注。同时在镁离子电池应用中表现出潜在的研究前景。然而,有关二硒化钼在锂离子电池中的报道多集中在如何提高储锂性能上,对其离子存储机理缺乏深入研究。此外,在储镁性能和机理上均没有报道。本项工作通过湿化学和高温煅烧两步法合成了二硒化钼纳米球,当二硒化钼纳米球用作锂离子电池负极材料时,在5 A·g-1的电流密度下展示了高于100 mAh·g-1的优异高倍率容量;同时,作为镁离子电池正极材料时,在20 mA·g-1的电流密度下表现出了120 mAh·g-1的高储镁可逆容量。另外,通过电化学、原位和非原位X射线衍射表征技术,分别揭示了二硒化钼纳米球低平台发生的转化式和高平台发生的类锂硒电池反应并存的储锂机理,以及赝电容式为主,嵌入式为辅的储镁机理。本项工作不仅为二维过渡金属硫族化合物材料的储锂机理提供了深刻的理解,同时也为新型层状储能材料的设计开发提供了方向。

本文引用格式

彭依 , 张伟 , 左防震 , 吕浩莹 , 洪凯骏 . 二硒化钼纳米球储锂和储镁的性能和机理研究[J]. 电化学, 2021 , 27(4) : 456 -464 . DOI: 10.13208/j.electrochem.200511

Abstract

Molybdenum diselenide (MoSe2) is a two-dimensional (2D) transition metal dichalcogenide (TMD) material, attracting wide attention in lithium ion battery (LIB) and exhibiting great potential in next-generation magnesium ion battery (MIB) due to its unique layered structure with fast ion mobility and weak van der Waals interlayer interaction. However, the reported literatures related to MoSe2 mainly focus on the enhancement of performance in LIB without deep storage mechanisms investigations. Meanwhile,the magnesium storage capacity and mechanisms have not been explored. In this work, MoSe2 nanospheres were synthesized via wet chemical route and followed by annealing treatment. When used as the anode and cathode materials, the MoSe2 nanospheres exhibited the excellent high-rate capacity of > 100 mAh·g-1 at 5 A·g-1 for LIB and the excellent reversible discharge capacity of 120 mAh·g-1 at 20 mA·g-1 for MIB, respectively. Furthermore, the conversion-type at low plateau and the lithium-selenium battery reaction-type at high plateau of Li+ storage mechanisms, as well as the pseudocapacitive reaction as the main and intercalation-type reaction as the supplement storage mechanisms of Mg2+ are discussed by electrochemical, in situ and ex situ X-ray diffraction characterizations. This work not only provides the deep understanding of lithium storage mechanism, but also demonstrates the good magnesium storage potential of TMD materials.

参考文献

[1] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
[2] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[3] Ai X P(艾新平), Yang H X(杨汉西). Multi-electron redox materials for high energy density electrodes[J]. J. Electrochem.(电化学), 2011, 17(2): 123-133.
[4] Muldoon J, Bucur C B, Gregory T. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond[J]. Chem. Rev., 2014, 114(23): 11683-11720.
[5] Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E. Prototype, systems for rechargeable magnesium batteries[J]. Nature, 2000, 407(6805): 724-727.
[6] Wang F F(王菲菲), Guo Y S(郭永胜), Yang J(杨军), Nuli Y N(努丽燕娜), Wang J L(王久林). Electrochemical characterization of (PhMgCl)2-AlCl3/mixed ether electroly-tes[J]. J. Electrochem.(电化学), 2012, 18(1): 56-61.
[7] Tao Z L, Xu L N, Gou X L, Chen J, Yuan H T. TiS2 nano-tubes as the cathode materials of Mg-ion batteries[J]. Chem. Commun., 2004, 18: 2080-2081.
[8] Liang Y L, Feng R J, Yang S Q, Ma H, Liang J, Chen J. Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode[J]. Adv. Mater., 2011, 23(5): 640-643.
[9] Chao D L, Liu E Z, Jaroniec M, Zhao N Q, Qiao S Z. Transition metal dichalcogenides for alkali metal ion batteries: engineering strategies at the atomic level[J]. Energy Environ. Sci., 13(4): 1096-1131.
[10] Shi Y F, Hua C X, Li B, Fang X P, Yao C H, Zhang Y C, Hu Y S, Wang Z X, Chen L Q, Zhao D Y, Stucky G D. Highly ordered mesoporous crystalline MoSe2 material with efficient visible-light-driven photocatalytic activity and enhanced lithium storage performance[J]. Adv. Funct. Mater., 2013, 23(14): 1832-1838.
[11] Wang H, Wang X Y, Wang L, Wang J, Jiang D L, Li G P, Zhang Y, Zhong H H, Jiang Y. Phase transition mechanism and electrochemical properties of nanocrystalline MoSe2 as anode materials for the high performance lithium-ion battery[J]. J. Phys. Chem. C, 2015, 119(19): 10197-10205.
[12] Morales J, Santos J, Tirado J L. Electrochemical studies of lithium and sodium intercalation in MoSe2[J]. Solid State Ion., 1996, 83(1-2): 57-64.
[13] Truong Q D, Devaraju M K, Nakayasu Y, Tamura N, Sasaki Y, Tomai T, Honma I. Exfoliated MoS2 and MoSe2 nanosheets by a supercritical fluid process for a hybrid Mg-Li-ion battery[J]. ACS Omega, 2017, 2(5): 2360-2367.
[14] Tang H, Huang H, Wang X S, Wu K Q, Tang G G, Li C S. Hydrothermal synjournal of 3D hierarchical flower-like MoSe2 microspheres and their adsorption performances for methyl orange[J]. Appl. Surf. Sci., 2016, 379: 296-303.
[15] Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984)[J]. Pure. Appl. Chem., 1985, 57(4): 603-619.
[16] Liu Y, Zhu M Q, Chen D. Sheet-like MoSe2/C composites with enhanced Li-ion storage properties[J]. J. Mater. Chem. A, 2015, 3(22): 11857-11862.
[17] Yang F Y, Ban D Y, Fang R C, Xu S H, Xu P S, Yuan S X. Valence band offset and interface formation of Ge/ZnSe(100) studied by synchrotron radiation photoemission[J]. J. Electron. Spectros. Relat. Phenomena., 1996, 80: 193-196.
[18] Bao D, Wang Y, Li X B, Wu T T, Chen Y J, Yang P P. Amorphous, crystalline and crystalline/amorphous selenium nanowires and their different (de)lithiation mechanisms[J]. Chem. Mater., 2015, 27(19): 6730-6736.
[19] Gao J Y, Li Y P, Shi L, Li J J, Zhang G Q. Rational design of hierarchical nanotubes through encapsulating CoSe2 nanoparticles into MoSe2/C composite shells with enhanced lithium and sodium storage performance[J]. ACS Appl. Mater. Interfaces, 2018, 10(24): 20635-20642.
[20] Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin?[J]. Science, 2014, 343(6176): 1210-1211.
[21] Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy Environ. Sci., 2014, 7(5): 1597-1614.
[22] Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. J. Phys. Chem. C, 2007, 111(40): 14925-14931.
[23] Sheng J Z, Peng C, Yan S W, Zhang G B, Jiang Y L, An Q Y, Wei Q L, Ru Q, Mai L Q. New anatase phase VTi2.6O7.2 ultrafine nanocrystals for high-performance rechargeable magnesiumbased batteries[J]. J. Mater. Chem. A, 2018, 6(28): 13901-13907.
[24] Sheng J Z, Zang H, Tang C J, An Q Y, Wei Q L, Zhang G B, Chen L N, Peng C, Mai L Q. Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries[J]. Nano Energy, 2016, 24: 130-138.
[25] Peng C, Lyu H Y, Wu L, Xiong T F, Xiong F Y, Liu Z A, An Q Y, Mai L Q. Lithium- and magnesium-storage mechanisms of novel hexagonal nbSe2[J]. ACS Appl. Mater. Interfaces, 2018, 10(43): 36988-36995.
[26] Zhang Y J, Chen D, Li X, Shen J W, Chen Z X, Cao S A, Li T, Xu F. α-MoS3@CNT nanowire cathode for rechar-geable Mg batteries: a pseudocapacitive approach for efficient Mg-storage[J]. Nanoscale, 2019, 11(34): 16043-16051.
[27] Fan X Y(樊小勇), Xu J M(许金梅), Zhuang Q C(庄全超), J H H(江宏宏), Huang L(黄令), Jiang Y X(姜艳霞), Dong Q F(董全峰), Sun S G(孙世刚), Composite electroplating and characterizations of Sn-SBA15 anode for lithium-ion batteries[J]. J. Electrochem.(电化学), 2007, 13(1): 25-29.
文章导航

/