欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

电化学阻抗谱弛豫时间分布基础

  • 王佳 ,
  • 黄秋安 ,
  • 李伟恒 ,
  • 王娟 ,
  • 庄全超 ,
  • 张久俊
展开
  • 1.上海大学可持续能源研究院,上海 200444
    2.西安建筑科技大学西安市清洁能源重点实验室,陕西 西安 710055
    3.中国矿业大学材料科学与物理学院,江苏 徐州 221116

收稿日期: 2020-06-08

  修回日期: 2020-07-05

  网络出版日期: 2020-07-08

基金资助

西安市清洁能源重点实验室项目(2019219914SYS014CG036);国家自然科学基金(22078190)

Fundamentals of Distribution of Relaxation Times for Electrochemical Impedance Spectroscopy

  • Jia WANG ,
  • Qiu-an HUANG ,
  • Wei-heng LI ,
  • Juan WANG ,
  • Quan-chao ZHUANG ,
  • Jiu-jun ZHANG
Expand
  • 1. Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
    2. Xi’an Key Laboratory of Clean Energy, Xi’an University of Architecture and Technology,Xi’an 710055, China;
    3. School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China

Received date: 2020-06-08

  Revised date: 2020-07-05

  Online published: 2020-07-08

摘要

电化学阻抗谱(EIS)是一种高效的原位/非原位电化学表征技术,已在电化学能源领域得到广泛应用,如用于锂离子电池、超级电容器、燃料电池等材料及器件性能的诊断和优化. 弛豫时间分布(DRT)是一种不依赖于研究对象先验知识的EIS解析技术,可用于分离和解析EIS中高度重叠的物理化学过程. 为了促进DRT解析技术的应用和推广,本文详细阐述了如下问题: 1) DRT解析原理、实现算法及重要扩展; 2) 典型电路基元的DRT解析分析; 3) DRT的具体实现及在电化学能源中的典型应用举例; 4)DRT解析技术研究进展、存在问题及发展趋势.

本文引用格式

王佳 , 黄秋安 , 李伟恒 , 王娟 , 庄全超 , 张久俊 . 电化学阻抗谱弛豫时间分布基础[J]. 电化学, 2020 , 26(5) : 607 -627 . DOI: 10.13208/j.electrochem.200641

Abstract

Electrochemical impedance spectroscopy (EIS) is a powerful electrochemical characterization technology, which has been widely used in the field of electrochemical energy, such as lithium-ion batteries, supercapacitors, fuel cells, etc. Distribution of relaxation time (DRT) is an EIS deconvolution technique which does not depend on the prior knowledge of the targeted research object. Furthermore, DRT can serve to separate and analyze physical and chemical processes which are highly overlapped in their EIS data. In order to encourage the application and popularization of DRT deconvolution technology, several core questions are addressed in this paper: (1) DRT deconvolution principle, implementation steps and important extensions; (2) DRT deconvolution method for typical circuit elements; (3) DRT implementation software and typical electrochemical energy application examples; (4) achievements, challenges and development trends for DRT deconvolution technique.

文章导航

/