欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

白藜芦醇对长期贮存锂离子电池电解液性能的影响

  • 张蕾 ,
  • 张绪平 ,
  • 张思维 ,
  • 庄全超
展开
  • 中国矿业大学材料与物理学院,江苏 徐州 221116
* Tel: (86)13605215324, E-mail: zhuangquanchao@126.com

收稿日期: 2020-06-08

  修回日期: 2020-06-28

  网络出版日期: 2020-07-06

基金资助

国家自然科学基金项目(U1730136);中央高校基本科研业务费(2017XKQY062)

Influence of Resveratrol on Performance of Long-Term Storage’s Lithium-Ion Battery Electrolyte

  • Lei Zhang ,
  • Xu-Ping Zhang ,
  • Si-Wei Zhang ,
  • Quan-Chao Zhuang
Expand
  • Lithium ion battery lab, School of Materials & Physics, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China

Received date: 2020-06-08

  Revised date: 2020-06-28

  Online published: 2020-07-06

摘要

锂离子电池电解液从制造完成到使用,一般都会经历灌装、运输和贮存的过程,了解长期贮存过程对锂离子电池电解液性能的影响,对锂离子电池的生产具有一定的理论指导意义。本文运用电化学阻抗谱(EIS)测试并结合循环伏安法(CV)测试、充放电测试、扫描电子显微镜(SEM)等研究了1 mol·L-1 LiPF6-EC:EMC基础电解液中添加不同浓度白藜芦醇(RES)时,在长期贮存过程中对石墨电极性能的影响及机制。研究结果表明,新鲜的基础电解液在经历6个月的贮存后,石墨电极在其中无论是可逆循环容量还是循环稳定性(容量保持率)均出现大幅度的下降。这主要是由于在经历6个月贮存后的基础电解液中,石墨电极表面形成的 SEI 膜较厚,进而导致锂离子嵌入过程的不稳定造成的。在基础电解液中添加不同浓度的白藜芦醇均能有效抑制电解液长期贮存造成的石墨电极在其中电化学性能的下降,当基础电解液中含有200 ppm白藜芦醇经历6个月贮存后,石墨电极无论是可逆容量还是循环性能稳定性甚至优异于在新鲜的电解液中。

本文引用格式

张蕾 , 张绪平 , 张思维 , 庄全超 . 白藜芦醇对长期贮存锂离子电池电解液性能的影响[J]. 电化学, 2021 , 27(1) : 83 -91 . DOI: 10.13208/j.electrochem.200607

Abstract

Electrolyte of lithium-ion battery usually goes through processes of filling, transportation and storage from the completion of manufacture to the use. Understanding the influence of long-term storage process on performance of lithium-ion battery electrolyte is of theoretical significance for production of lithium-ion battery. Scanning electron microscope (SEM) images showed that the solid electrolyte interface (SEI) film formed on the surface of the graphite electrode was thicker in the base electrolyte after 6 months of storage. The charge/discharge test results showed that the reversible cycle capacity and cycle stability (capacity retention rate) of graphite electrode decreased significantly after 6 months of storage. This might be due to the thicker SEI film formed on the surface of the graphite electrode, which in turn led to the instability of the lithium-ion intercalation process. When the base electrolyte containing 200 ppm resveratrol was stored for 6 months, the reversible capacity and cycle performance stability of the graphite electrode were even better than those in fresh base electrolyte. The results of electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) idicated that adding 200 ppm resveratrol to the base electrolyte could effectively suppress the decline in the electrochemical performance of the graphite electrode caused by long-term storage of the base electrolyte.

参考文献

[1] Zhuang Q C(庄全超), Wu S(武山), Liu W Y(刘文元), Lu Z D(陆兆达), et al. The research of organic electrolyte solutions for Li-ion batteries[J]. J. Electrochem. (电化学), 2001,7(4):23-32.
[2] An S J, Li J L, Daniel C, Mohanty D, Nagpure S, Wood D L. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016,105(1):52-76.
[3] Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chem. Rev., 2014,114(23):11503-11618.
[4] Jiang N, Li B, Ning F H, Xia D G. All boron-based 2D material as anode material in Li-ion batteries[J]. J. Energy Chem., 2018,27(6):1651-1654.
[5] Tasaki K, Nakamura S. Computer simulation of LiPF6 salt association in Li-ion battery electrolyte in the presence of an anion trapping agent[J]. J. Electrochem. Soc., 2001,148(9):984-988.
[6] Shimizu M, Koya T, Umeki M, Arai S. Communication intercalation/de-intercalation behavior of Li-ion encapsulated by 12-crown-4-etherinto graphite electrode[J]. J. Electrochem. Soc., 2018,165(13):A3212-A3214.
[7] Saqib N, Ganim C M, Shelton A E, Porter J M . On the decomposition of carbonate-based lithium-ion battery electrolytes studied using operando infrared spectroscopy[J]. J. Electrochem. Soc., 2018,165(16):A4051-A4057.
[8] Bancuta O R, Chilian A, Bancuta I, Setnescu R, Setnescu T, Ion R M. Thermal characterization of resveratrol[J]. Rev. Chim., 2018,69(6):1346-1351.
[9] Zhuang Q C, Yang Z, Zhang L, Cui Y H . Diagnosis of electrochemical impedance spectroscopy in lithium ion batteries[J]. Prog. Chem., 2020,32(6):761-791.
[10] Liu W, Shi Y L, Zhuang Q C, Cuiab Y L, Ju Z C, Cui Y H. Ethylene glycol bis(propionitrile) ether as an additive for SEI film formation in lithium-ion batteries[J]. Int. J. Electrochem. Sci., 2020,15(5):4722-4738.
[11] Ren T, Zhuang Q C, Hao Y W, Cui Y L. Influence of electrochemical performance of lithium ion batteries with the adding of LiF and LiCl[J]. Acta Chim. Sin., 2016,74(10):833-838.
[12] Zhao L Y, Bian S L, Ju Z C, Cu Y L, Cui Y H, Shi Y L, Zhuang Q C. Adiponitrile as a novel electrolyte additive for high-voltage lithium-ion batteries[J]. Int. J. Electrochem. Sci., 2019,14(10):9755-9773.
[13] Zuo W Q, Cui Y L, Zhuang Q C, Shi Y L, Ying P Z, Cui Y H. Effect of N-N dimethyltrifluoroacetamide additive on low temperature performance of graphite anode[J]. Int. J. Electrochem. Sci., 2019,15(1):382-393.
[14] Liu J Q, Zhuang Q C, Shi Y L, Yan X D, Zhao X, Chen X B. Tertiary butyl hydroquinone as a novel additive for SEI film formation in lithium-ion batteries[J]. RSC Adv., 2016,6(49):42885-42891.
[15] Levi M D, Aurbach D. Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium[J]. J. Phys. Chem. B, 1997,101(23):4630-4640.
[16] Levi M D, Aurbach D. Impedance spectra of porous, composite intercalation electrodes: the origin of the low-frequency semicircles[J]. J. Power Sources, 2005,146(1/2):727-731.
[17] Deng X, Xie K, Li L, Zhou W, Sunarso J, Shao Z P. Scalable synjournal of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries[J]. Carbon, 2016,107(1):67-73.
[18] Deng X, Zhao B T, Zhu L, Shao Z P. Molten salt synjournal of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors[J]. Carbon, 2015,93(1), 48-58.
[19] Xu S D(徐守冬), Zhuang Q C(庄全超), Shi Y L(史月丽), Zhu Y B(朱亚波), Qiu X Y(邱祥云), Sun Z(孙智). Electrochemical impedance spectra of intercalation compound electrodes: models and theoretical simulations[J]. Acta Phys.-Chim. Sin. (物理化学学报), 2011,27(10):2353-2359.
[20] Xu S D, Zhuang Q C, Tian L L, Qin Y P, Fang L, Sun S G. Impedance spectra of nonhomogeneous, multilayered porous composite graphite electrodes for Li-ion batteries: experimental and theoretical studies[J]. J. Phys. Chem. C, 2011,115(18):9210-9219.
[21] Zhuang Q C, Li J, Tian L L. Potassium carbonate as film forming electrolyte additive for lithium-ion batteries[J]. J. Power Sources, 2013,222(15):177-183.
[22] Zhao X, Zhuang Q C, Xu S D, Xu Y X, Shi Y L, Zhang X X. A new insight into the content effect of fluoroethylene carbonate as a film forming additive for lithium-ion batteries[J]. Int. J. Electrochem Sci., 2015,10(3):2515-2534.
文章导航

/