欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

惰性小分子电催化还原反应的电解液调控

  • 李金翰 ,
  • 程方益
展开
  • 南开大学化学学院,先进能源材料化学教育部重点实验室,新能源转化与存储交叉科学中心,天津 300071

收稿日期: 2020-05-04

  修回日期: 2020-06-11

  网络出版日期: 2020-06-28

基金资助

国家自然科学基金项目(21925503);国家自然科学基金项目(21871149);国家重点研发计划纳米科技专项(2017YFA0206700);中央高校基本科研业务费专项资金项目资助

Electrolyte Tailoring for Electrocatalytic Reduction of Stable Molecules

  • Jin-han LI ,
  • Fang-yi CHENG
Expand
  • Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast), College of Chemistry, Nankai University, Tianjin 300071, China

Received date: 2020-05-04

  Revised date: 2020-06-11

  Online published: 2020-06-28

摘要

本文概述了惰性小分子电催化还原反应(如二氧化碳还原反应和氮气还原反应)中电解液的组成和作用机制,介绍了相关电解液研究的最新进展,并讨论了电解液调控在揭示反应机理、改善催化性能中的重要作用.

本文引用格式

李金翰 , 程方益 . 惰性小分子电催化还原反应的电解液调控[J]. 电化学, 2020 , 26(4) : 474 -485 . DOI: 10.13208/j.electrochem.200442

Abstract

Reduction of stable molecules such as CO2 and N2 is important process in electrochemical energy conversion and storage technologies for electrofuels production. However, for the inert nature of CO2/N2 molecule and competitive proton reduction in conventional aqueous electrolytes, selective electrochemical carbon/nitrogen fixation suffers from high overpotential, low reaction rate and low selectivity. While addressing these issues has witnessed substantial advances in electrocatalysts, much less attention has been placed on the electrolytes, which play an important role in regulating the local environment and thus the performance of catalysts under operating conditions. Rational design of electrolytes has received increasing interest to boost the activity and selectivity of stable molecule electrocatalysis. In this review, we overview recent progress in mechanistic understanding and strategies development in tailoring electrolytes for electrocatalytic CO2 and N2 reduction. We highlight the ion effect, local environment, and interface structure of electrocatalysts and electrolytes based on experimental and computational studies on representative examples. Particular discussion is provided on the effect of local pH modulation, electrolyte concentrating, selective ionic adsorption and nonaqueous electrolyte.

参考文献

[1] Chen J G, Crooks R M, Seefeldt L C, et al. Beyond fossil fuel-driven nitrogen transformations[J]. Science, 2018,360(6391):eaar6611.
[2] Gruber N, Galloway J N, An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176):293-296.
[3] Gao D, Arán-Ais R M, Jeon H S, et al. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products[J]. Nature Catalysis, 2019,2(3):198-210.
[4] Ross M B, De Luna P, Li Y, et al. Designing materials for electrochemical carbon dioxide recycling[J]. Nature Catalysis, 2019,2(8):648-658.
[5] Birdja Y Y, Pérez-Gallent E, Figueiredo M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019,4(9):732-745.
[6] Guo C, Ran J, Vasileff A, et al. Rational design of electrocatalysts and photo(electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions[J]. Energy & Environmental Science, 2018,11(1):45-56.
[7] Xu W C, Fan G L, Chen J L, et al. Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions[J]. Angewandte Chemie International Edition, 2020,132(9):3539-3544.
[8] Wei Y J, Liu J, Cheng F Y, et al. Mn-doped atomic SnO2 layers for highly efficient CO2 electrochemical reduction[J]. Journal of Materials Chemistry A, 2019,7(34):19651-19656.
[9] Mistry H, Behafarid F, Reske R, et al. Tuning catalytic selectivity at the mesoscale via interparticle interactions[J]. ACS Catalysis, 2016,6(2):1075-1080.
[10] Li C W, Kanan M W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films[J]. Journal of the American Chemical Society, 2012,134(17):7231-7234.
[11] Hao Y C, Guo Y, Chen L W, et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water[J]. Nature Catalysis, 2019,2(5):448-456.
[12] Matthew M Sartin, Chen W (陈微), He F (贺凡), et al. Recent progress in the mechanistic understanding of CO2 reduction on copper[J]. Journal of Electrochemistry (电化学), 2020,26(1):41-53.
[13] Wang L (王鲁丰), Qian X (钱鑫), Deng L F (邓丽芳), et al. Recent progress on catalysts about electochemical syjournal of ammonia from nitrogen[J]. CIESC Journal (化工学报), 2019,70(8):2854-2863.
[14] Burdyny T, Smith W A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions[J]. Energy & Environmental Science, 2019,12(5):1442-1453.
[15] Kibria M G, Edwards J P, Gabardo C M, et al. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design[J]. Advanced Materials, 2019,31(31):1807166.
[16] Qiao S Z (乔世璋). Nanoscale enrichment effect boosts electrocatalytic carbon dioxide reduction[J]. Acta Physico-Chimica Sinica (物理化学学报), 2020,36:2004010-2004011.
[17] Zhang X R (张旭锐), Shao X L (邵晓琳), Yi J (易金), et al. Statuses, challenges and strategies in the development of low-temperature carbon dioxide electroreduction technology[J]. Journal of Electrochemistry (电化学), 2019,25(4):413-425.
[18] Wang Y F, Han P, Lv X M, et al. Defect and interface engineering for aqueous electrocatalytic CO2 reduction[J]. Joule, 2018,2(12):2551-2582.
[19] Yin F J, Liu H. The j-pH diagram of interfacial reactions involving H+ and OH-[J]. Journal of Energy Chemistry, 2020,50:339-343.
[20] Zhu S, Jiang B, Cai W B, et al. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces[J]. Journal of the American Chemical Society, 2017,139(44):15664-15667.
[21] Handoko A D, Wei F, Yeo B S, et al. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques[J]. Nature Catalysis, 2018,1(12):922-934.
[22] Chen L D, Urushihara M, Chan K, et al. Electric field effects in electrochemical CO2 reduction[J]. ACS Catalysis, 2016,6(10):7133-7139.
[23] Singh A R, Rohr B A, Schwalbe J A, et al. Electrochemical ammonia synjournal: the selectivity challenge[J]. ACS Catalysis, 2017,7(1):706-709.
[24] Pérez-Gallent E, Figueiredo M C, Calle-Vallejo F, et al. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes[J]. Angewandte Chemie International Edition, 2017,56(13):3621-3624.
[25] Pérez-Gallent E, Marcandalli G, Figueiredo M C, et al. Structure-and potential-dependent cation effects on CO reduction at copper single-crystal electrodes[J]. Journal of the American Chemical Society, 2017,139(45):16412-16419.
[26] Gao D, McCrum I T, Deo S, et al. Activity and selectivity control in CO2 electroreduction to multicarbon products over CuOx catalysts via electrolyte design[J]. ACS Catalysis, 2018,8(11):10012-10020.
[27] Jouny M, Luc W, Jiao F. High-rate electroreduction of carbon monoxide to multi-carbon products[J]. Nature Ca-talysis, 2018,1(10):748-755.
[28] Murata A, Hori Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode[J]. Bulletin of the Chemical Society of Japan, 1991,64(1):123-127.
[29] Hori Y, Suzuki S. Electrolytic reduction of carbon dioxide at mercury electrode in aqueous solution[J]. Bulletin of the Chemical Society of Japan, 1982,55(3):660-665.
[30] Thorson M R, Siil K I, Kenis P J. Effect of cations on the electrochemical conversion of CO2 to CO[J]. Journal of The Electrochemical Society, 2012,160(1):F69-F74.
[31] Ayemoba O, Cuesta A. Spectroscopic evidence of sizedependent buffering of interfacial pH by cation hydrolysis during CO2 electroreduction[J]. ACS Applied Materials & Interfaces, 2017,9(33):27377-27382.
[32] Singh M R, Kwon Y, Lum Y, et al. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu[J]. Journal of the American Chemical Society, 2016,138(39):13006-13012.
[33] Verma S, Lu X, Ma S, et al. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes[J]. Physical Chemistry Chemical Physics, 2016,18(10):7075-7084.
[34] Resasco J, Chen L D, Clark E, et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide[J]. Journal of the American Chemical Society, 2017,139(32):11277-11287.
[35] Schizodimou A, Kyriacou G. Acceleration of the reduction of carbon dioxide in the presence of multivalent cations[J]. Electrochimica Acta, 2012,78:171-176.
[36] Varela A S, Ju W, Reier T, et al. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides[J]. ACS Catalysis, 2016,6(4):2136-2144.
[37] Kortlever R, Tan K, Kwon Y, et al. Electrochemical carbon dioxide and bicarbonate reduction on copper in weakly alkaline media[J]. Journal of Solid State Electrochemistry, 2013,17(7):1843-1849.
[38] Innocent B, Pasquier D, Ropital F, et al. FTIR spectroscopy study of the reduction of carbon dioxide on lead electrode in aqueous medium[J]. Applied Catalysis B: Environmental, 2010,94(3/4):219-224.
[39] Sreekanth N, Phani K L. Selective reduction of CO2 to formate through bicarbonate reduction on metal electrodes: new insights gained from SG/TC mode of SECM[J]. Chemical Communications, 2014,50(76):11143-11146.
[40] Dunwell M, Lu Q, Heyes J M, et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold[J]. Journal of the American Chemical Society, 2017,139(10):3774-3783.
[41] Wuttig A, Yoon Y, Ryu J, et al. Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction[J]. Journal of the American Chemical Society, 2017,139(47):17109-17113.
[42] Gao D, Scholten F, Roldan Cuenya B. Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: halide effect[J]. ACS Ca-talysis, 2017,7(8):5112-5120.
[43] Hori Y, Murata A, Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1989,85(8):2309-2326.
[44] Kas R, Kortlever R, Yilmaz H, et al. Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions[J]. ChemElectro-Chem, 2015,2(3):354-358.
[45] Varela A S, Kroschel M, Reier T, et al. Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH[J]. Catalysis Today, 2016,260:8-13.
[46] Hashiba H, Weng L C, Chen Y, et al. Effects of electrolyte buffer capacity on surface reactant species and the reaction rate of CO2 in electrochemical CO2 reduction[J]. The Journal of Physical Chemistry C, 2018,122(7):3719-3726.
[47] Gabardo C M, Seifitokaldani A, Edwards J P, et al. Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO[J]. Energy & Environmental Science, 2018,11(9):2531-2539.
[48] Ma S, Sadakiyo M, Luo R, et al. One-step electrosynjournal of ethylene and ethanol from CO2 in an alkaline electrolyzer[J]. Journal of Power Sources, 2016,301:219-228.
[49] Verma S, Hamasaki Y, Kim C, et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer[J]. ACS Energy Letters, 2017,3(1):193-198.
[50] Dinh C T, Burdyny T, Kibria M G, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018,360(6390):783-787.
[51] de Arquer F P G, Dinh C T, Ozden A, et al. CO2 electrolysis to multicarbon products at activities greater than 1 A·cm-2[J]. Science, 2020,367(6478):661-666.
[52] Rosen B A, Salehi-Khojin A, Thorson M R, et al. Ionic liquid - mediated selective conversion of CO2 to CO at low overpotentials[J]. Science, 2011,334(6056):643-644.
[53] Sun L, Ramesha G K, Kamat P V, et al. Switching the reaction course of electrochemical CO2 reduction with ionic liquids[J]. Langmuir, 2014,30(21):6302-6308.
[54] Zhou F, Azofra L M, Ali M, et al. Electro-synjournal of ammonia from nitrogen at ambient temperature and pressure in ionic liquids[J]. Energy & Environmental Science, 2017,10(12):2516-2520.
[55] Urushihara M, Chan K, Shi C, et al. Theoretical study of EMIM+ adsorption on silver electrode surfaces[J]. The Journal of Physical Chemistry C, 2015,119(34):20023-20029.
[56] Zhu W, Michalsky R, Metin O n, et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO[J]. Journal of the American Chemical Society, 2013,135(45):16833-16836.
[57] Lim H K, Kim H. The mechanism of room-temperature ionic-liquid-based electrochemical CO2 reduction: a review[J]. Molecules, 2017,22(4):536.
[58] Grosse P, Gao D, Scholten F, et al. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: size and support effects[J]. Angewandte Chemie International Edition, 2018,57(21):6192-6197.
[59] Dutta A, Morstein C E, Rahaman M, et al. Beyond copper in CO2 electrolysis: effective hydrocarbon production on silver-nanofoam catalysts[J]. ACS Catalysis, 2018,8(9):8357-8368.
[60] Kim Y G, Baricuatro J H, Javier A, et al. The evolution of the polycrystalline copper surface, first to Cu(111) and then to Cu(100), at a fixed CO2RR potential: a study by operando EC-STM[J]. Langmuir, 2014,30(50):15053-15056.
[61] Kim Y G, Baricuatro J H, Soriaga M P. Surface reconstruction of polycrystalline Cu electrodes in aqueous KHCO3 electrolyte at potentials in the early stages of CO2 reduction[J]. Electrocatalysis, 2018,9(4):526-530.
[62] Lee S Y, Jung H, Kim N K, et al. Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction[J]. Journal of the American Chemical Society, 2018,140(28):8681-8689.
[63] Huang J, H?rmann N, Oveisi E, et al. Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction[J]. Nature Communications, 2018,9(1):1-9.
[64] Roberts F S, Kuhl K P, Nilsson A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts[J]. Angewandte Chemie International Edition, 2015,54(17):5179-5182.
[65] Gao D, Zegkinoglou I, Divins N J, et al. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols[J]. ACS Nano, 2017,11(5):4825-4831.
[66] Matsushima H, Taranovskyy A, Haak C, et al. Reconstruction of Cu(100) electrode surfaces during hydrogen evolution[J]. Journal of the American Chemical Society, 2009,131(30):10362-10363.
[67] Becker J Y, Avraham S, Posin B. Nitrogen fixation: Part I. Electrochemical reduction of titanium compounds in the presence of catechol and N2 in MeOH or THF[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987,230(1/2):143-153.
[68] Kim K, Lee N, Yoo C, et al. Communication-electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure[J]. Journal of The Electrochemical Society, 2016,163(7):F610-F612.
[69] Kim K, Yoo C Y, Kim J N, et al. Electrochemical synjournal of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure[J]. Journal of The Electrochemical Society, 2016,163(14):F1523-F1526.
[70] Lee H K, Koh C S L, Lee Y H, et al. Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach[J]. Science Advances, 2018, 4(3):eaar3208.
[71] Ohya S, Kaneco S, Katsumata H, et al. Electrochemical reduction of CO2 in methanol with aid of CuO and Cu2O[J]. Catalysis Today, 2009,148(3-4):329-334.
[72] Kaneco S, Iiba K, Katsumata H, et al. Electrochemical reduction of high pressure CO2 at a Cu electrode in cold methanol[J]. Electrochimica Acta, 2006,51(23):4880-4885.
[73] Sheets B L, Botte G G. Electrochemical nitrogen reduction to ammonia under mild conditions enabled by a polymer gel electrolyte[J]. Chemical Communications, 2018,54(34):4250-4253.
[74] Cook R L, Sammells A F. Ambient temperature gas phase electrochemical nitrogen reduction to ammonia at ruthenium/solid polymer electrolyte interface[J]. Catalysis Letters, 1988,1(11):345-349.
[75] Xia C, Zhu P, Jiang Q, et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices[J]. Nature Energy, 2019,4(9):776-785.
[76] Li Y C, Zhou D, Yan Z, et al. Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells[J]. ACS Energy Letters, 2016,1(6):1149-1153.
[77] Salvatore D A, Weekes D M, He J, et al. Electrolysis of Gaseous CO2 to CO in a flow cell with a bipolar membrane[J]. ACS Energy Letters, 2017,3(1):149-154.
[78] Liu Z, Masel R I, Chen Q, et al. Electrochemical generation of syngas from water and carbon dioxide at industrially important rates[J]. Journal of CO2 Utilization, 2016,15(S1):50-56.
[79] Lee W, Kim Y E, Youn M H, et al. Catholyte-free electrocatalytic CO2 reduction to formate[J]. Angewandte Chemie International Edition, 2018,57(23):6883-6887.
[80] Delacourt C, Ridgway P L, Kerr J B, et al. Design of an electrochemical cell making syngas (CO + H2) from CO2 and H2O reduction at room temperature[J]. Journal of The Electrochemical Society, 2008,155(1):B42-B49.
文章导航

/