高温固体氧化物电解制氢技术发展现状与展望
收稿日期: 2019-11-21
修回日期: 2020-03-28
网络出版日期: 2020-04-28
基金资助
国家自然科学基金项目(No. 91645126);国家自然科学基金项目(No. 21273128);国家科技重大专项(No. ZX06901);清华大学自主科研项目(No. 2018Z05JZY010)
Development Status and Prospects of Hydrogen Production by High Temperature Solid Oxide Electrolysis
Received date: 2019-11-21
Revised date: 2020-03-28
Online published: 2020-04-28
张文强 , 于波 . 高温固体氧化物电解制氢技术发展现状与展望[J]. 电化学, 2020 , 26(2) : 212 -229 . DOI: 10.13208/j.electrochem.191144
Solid oxide electrolysis cell is an advanced energy conversion device with high efficiency, simplicity, flexibility, and environmental friendliness. It is currently a research hotspot in the international energy field. This paper introduces and analyzes the basic principles, key materials, system components and developments of solid oxidation electrolysis cells. Furthermore, the recent research progresses, challenges and future development directions in solid oxidation electrolysis cells in the field of high-efficiency hydrogen production are summarized and outlined.
[1] | 国家发展改革委,国家能源局. 《能源发展“十三五”规划》[EB/OL]. [ 2017- 01- 17] . |
[2] | Buttler A, Spliethoff H . Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review[J]. Renewable and Sunstainable Reviews, 2018,82:2440-2454. |
[3] | Ebbesen S D, Jensen S H, Hauch A et al, High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells[J]. Chemical Reviews, 2014,114(21):10697-10734. |
[4] | Zheng Y, Wang J C, Yu B , et al, A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology[J]. Chemical Society Reviews, 2017,46(5):1427-1463. |
[5] | Zhang W Q( 张文强), Yu B( 于波), Chen J( 陈靖 ), et al. Hydrogen production through sofid oxide electrolysis at elevated temperatures[J]. Progress in Chemistry( 化学进展), 2008,20(5):778-787. |
[6] | Bi L. Boulfrad S, Traversa E . Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides[J]. Chemical Society Reviews, 43(24):8255-8270. |
[7] | Lei L B, Zhang J H, Yuan Z H , et al. Progress report on proton conducting solid oxide electrolysis cells[J]. Advanced Functional Materials, 2019,29(37):1903805. |
[8] | Kim J, Jun A, Gwon O , et al. Hybrid-solid oxide electrolysis cell: A new strategy for efficient hydrogen production[J]. Nano Energy, 2018,44:121-126. |
[9] | Liu M Y, Yu B, Xu J M, Chen J . Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production[J]. Journal of Power Sour-ces, 2008; 177:493-499. |
[10] | Liu M Y, Yu B, Chen J , et al. Two-dimensional simula-tion and critical efficiency analysis of high-temperature steam electrolysis system for hydrogen production[J]. Journal of Power Sources, 2008,183(2):708-712. |
[11] | Zhang W Q, Yu B, Xu J M . Efficiency evaluation of high-temperature steam electrolytic systems coupled with different nuclear reactors[J]. International Journal of Hydrogen Energy, 2012,37:12060-12068. |
[12] | Herring J S, O’Brien J E, Stoot C M , et al. Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology[J]. International Journal of Hydrogen Energy, 2007,32:440-450. |
[13] | International Energy Agency. Technology roadmap hydrogen and fuel cells[EB/OL]. June, 2015. . |
[14] | Hydrogenics. Renewable hydrogen solutions[EB/OL]. 2016. . |
[15] | Sunfire GmbH. RSOC Electrolyzer Factsheet[EB/OL]. 2016. . |
[16] | Felgenhauer M, Hamacher T . State-of-the-art of commercial electrolyzers and onsite hydrogen generation for logistic vehicles in South Carolina[J]. International Journal of Hydrogen Energy, 2015,40(5):2084-2090. |
[17] | Stoots C, O’Brien J, Hartvigsen J . Results of recent high temperature coelectrolysis studies at the Idaho National Laboratory[J]. International Journal of Hydrogen Energy, 2009,34(9):4208-4215. |
[18] | Raballo S, Llera J, Pérez A, Bolcich J C . Clean hydrogen production in Patagonia Argentina[C]// Detlef Stolten, Thomas Grube (Eds.): 18th World Hydrogen Energy Con-ference 2010-WHEC 2010, Proceedings of the WHEC, May 16-21. 2010: 11-16. |
[19] | David M, Ocampo-Martinez C, Sanchez-Pena R . Advances in alkaline water electrolyzers: A review[J]. Journal of Energy Storage, 2019,23:392-403. |
[20] | Babic U, Suermann M, Buehi F N , et al, Review-identifying critical gaps for polymer electrolyte water electrolysis development[J]. Journal of The Electrochemical Society, 2017,164(4):F387-F399. |
[21] | ZhangX R( 张旭锐), Shao X L( 邵晓琳), Yi J( 易金 ), et al. Statuses, challenges and strategies in the development of low-temperature carbon dioxide electroreduction technology[J]. Journal of Electrochemistry( 电化学), 2019,25(4):413-425. |
[22] | Wang Z( 王振), Yu B( 于波), Zhang W Q( 张文强 ), et al. Clean fuel production through high temperature electrolysis of H2O and CO2[J]. Progress in Chemistry( 化学进展), 2013,25(7):1229-1236. |
[23] | Gomez S Y, Hotza D . Current developments in reversible solid oxide fuel cells[J]. Renewable & Sustainable Energy Reviews, 2016,61:155-174. |
[24] | Zhao C H( 赵晨欢), Zhang W Q( 张文强), Yu B( 于波 ), et al. Solid oxide electrolyzer[J]. Progress in Chemistry( 化学进展), 2016,28(8):1265-1288. |
[25] | Danish company to build fuel-cell pilot plant [EB/OL]. . |
[26] | Stoots C M, O'Brien J E, Herring J S , et al. Idaho national laboratory experimental research in high temperature electrolysis for hydrogen and syngas production[C]// The American Society of Mechanical Engineers, Proceedings of the 4th International Topical Meeting on High Temperature Reactor Technology, HTR2008, September 28-October1, 2008, Washington, USA, HTR, 2008: 497-508. |
[27] | Borm O . Steam electrolysis as the core technology for sector coupling in the energy transition[EB/OL]. . |
[28] | Nernst W . Uber Die Elektrolytische Leitung Fester Korper Bei Sehr Hohen Temperaturen[J]. Z Elektrochem, 1899,6:41-43. |
[29] | Spacil H S, Tedmon C S . Electrochemical dissociation of water vapor in solid oxide electrolyte cells I. Thermodynamics and cell characteristics[J]. Journal of The Electrochemical Society, 1969,116:1618-1626. |
[30] | Spacil H S, Tedmon C S . Electrochemical dissociation of water vapor in solid oxide electrolyte cells II. Materials, fabrication, and properties[J]. Journal of The Electroche-mical Society, 1969,116:1627-1633. |
[31] | D?enitz W, Eedle E . High-temperature electrolysis of water vapor status of development and perspective for application[J]. International Journal of Hydrogen Energy, 1985,10:291-295. |
[32] | Herring J S, Lessing P, O'Brien J E , et al, hydrogen production through high-temperature electrolysis in a solid oxide cell[C]// Argonne National Laboratory, Second Information Exchange Meeting on Nuclear Production of Hydrogen, Illinois, USA, 2 and 3 October, 2003. |
[33] | O’Brien J, Boardman R . high temperature electrolysis test stand[EB/OL]. Idaho National Laboratory June 14, 2018. . |
[34] | Hi2H2. Highly efficient, high temperature, hydrogen production by water electrolysis[EB/OL]. 2004, . |
[35] | Tsimis D, Aguilo-Rullan A, Atanasiu M , et al. The status of SOFC and SOEC R&D in the european fuel cell and hydrogen joint undertaking programme[J]. ECS Transactions, 2019,91(1):9-26. |
[36] | Yu B, Zhang W Q, Chen J , et al. Advance on highly efficient hydrogen production by high temperature steam electrolysis[J]. Science in China Series B: Chemistry, 2008,51(4):289-304. |
[37] | Yu B, Zhang W Q, Xu J M , et al. Status and research of highly efficient hydrogen production through high temperature steam electrolysis at INET[J]. International Journal of Hydrogen Energy, 2010,35(7):2829-2835. |
[38] | U.S. DOE Nuclear Energy Research Advisory Committee and the generation IV International Forum. A Technology Roadmap for Generation IV Nuclear Energy System[EB/OL]. 2002, . |
[39] | Wang X( 王雪), Zhang W Q( 张文强), Yu B( 于波 ), et al. SOC Stack impedance characterization and identification based on DRT and ADIS methods[J]. Journal of Inorganic Materials( 无机材料学报), 2016,31(12):1279-1288. |
[40] | Li Y F, Zhang W Q, Zheng Y , et al. Controlling cation segregation in perovskite based electrodes for high electro-catalytic activity and durability[J]. Chemical Society Reviews, 2017,46(20):6345-6378. |
[41] | Wu T, Zhang W Q, Yu B , et al. Micro-/nanohoneycomb solid oxide electrolysis cell anodes with ultralarge current tolerance[J]. Advanced Energy Materials, 2018,8:1802203. |
[42] | Li Y F, Zhang W Q, Wu T , et al. Segregation induced self-assembly of highly active perovskite for rapid oxygen reduction reaction[J]. Advanced Energy Materials, 2018,8:1801893. |
[43] | Zheng Y, Li Y F, Wu T , et al. Controlling crystal orientation in multilayered heterostructures toward high electro-catalytic activity for oxygen reduction reaction[J]. Nano Energy, 2019,62:521-529. |
[44] | Yue W X, Li Y F, Zheng Y , et al. Enhancing coking resistance of Ni/YSZ electrodes: In situ characterization, mechanism research, and surface engineering[J]. Nano Energy, 2019,62:64-78 . |
[45] | Zheng Y, Zhang W Q, Li Y F , et al. Energy related CO2 conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies[J]. Nano Energy, 2017,40:512-539. |
[46] | Zheng Y, Li Y F, Wu T et al. Oxygen reduction kinetic enhancements of intermediate-temperature SOFC cathodes with novel Nd0.5Sr0.5CoO3-δ/Nd0.8Sr1.2CoO4±δ heterointerfaces[J]. Nano Energy, 2018,51:711-720. |
[47] | Zhao C H, Li Y F, Zhang W Q , et al. Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells[J]. Energy & Environmental Science, 2019,13(1):53-85. |
[48] | Wang S R, Hao X, Zhan W T . Research on a low temperature reversible solid oxide cell[J]. International Journal of Hydrogen Energy, 2017,42(50):29881-29887. |
[49] | Fan H, Han M F . Electrochemical stability of Sm0.5Sr0.5-CoO3-delta-infiltrated YSZ for solid oxide fuel cells/electrolysis cells[J]. Faraday Discussions, 2015,182:477-491. |
[50] | Zheng Y F, Li Q S, Guan W B , et al. Investigation of 30-cell solid oxide electrolyzer stack modules for hydrogen production[J]. Ceramics International, 2014,40(4):5801-5809. |
[51] | Chen X B, Guan C Z, Xiao G P , et al. Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells[J]. Faraday Discussions, 2015,182:341-351. |
[52] | Boardman R D . Figures of merit for nuclear/hydrogen hybrid systems[EB/OL]. 2017, . |
[53] | Blum L, Haart B, Malzbender J , et al. Recent results in Jülich solid oxide fuel cell technology development[J]. Journal of Power Sources, 2013,241:477-485. |
[54] | Minh N Q, Lee Y H, Tran T Q , et al. Development of a versatile, high-performance solid oxide fuel cell stack technology[J]. ECS Transactions, 2019,91(1):133-138. |
[55] | Hagen A, Frandsen H L . Solid oxide development status at DTU energy[J]. ECS Transactions, 2019,91(1):235-245. |
[56] | Adler S B . Factors governing oxygen reduction in solid oxide fuel cell cathodes[J]. Chemical Reviews, 2004,104(10):4791-4844. |
[57] | Graves C, Ebbesen S D, Jensen S H , et al. Eliminating degradation in solid oxide electrochemical cells by reversible operation[J]. Nature Materials, 2014,14(2):239-244. |
[58] | Zhu T L, Troiani H E, Mogni L V , et al. Ni-substituted Sr(Ti,Fe)O3 SOFC anodes: Achieving high performance via metal alloy nanoparticle exsolution[J]. Joule, 2018,2(3):478-496. |
[59] | Suntivich J, May K J, Gasteiger H A , et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science, 2011,334(6061):1383-1385. |
[60] | Wachsman E D, Lee K T . Lowering the temperature of solid oxide fuel cells[J]. Science, 2011,334(6058):935-939. |
[61] | Zhou Y, Guan X F, Zhou H , et al. Strongly correlated perovskite fuel cells[J]. Nature, 2016,534(7606):231-234. |
[62] | Jiang Y X( 姜艳霞), Tian N( 田娜), Zhou Z Y( 周志有 ), et al. Progresses in electrocatalysis of nanomaterials tuning the surface structure and property of electrocatalysts[J]. Journal of Electrochemistry( 电化学), 2009,15(4):359-370. |
[63] | Irvine J T S, Neagu D, Verbraeken M C , et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers[J]. Nature Energy, 2016,1:15014. |
[64] | Wang Y, Li W Y, Ma L , et al. Degradation of solid oxide electrolysis cells: Phenomena, mechanisms, and emerging mitigation strategies-A review[J]. Journal of Materials Science & Technology, 2019,23(1):109-123. |
[65] | Chen K, Jiang S P . Review-materials degradation of solid oxide electrolysis cells[J]. Journal of The Electrochemical Society, 2019,163(11):F3070-F3083. |
[66] | Jun A, Ju Y W, Kim G . Solid oxide electrolysis: concluding remarks[J]. Faraday Discussions, 2015,182:519-528. |
[67] | Knibbe R, Traulsen M L, Hauch A , et al. Solid oxide ele-ctrolysis cells: Degradation at high current densities[J]. Journal of The Electrochemical Society, 2010,157(8):B1209-B1217. |
[68] | Virkar A V . Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells[J]. International Journal of Hydrogen Energy, 2010,35(18):9527-9543. |
[69] | Kiebach R. Norrman K, Chatzichristodoulou C , et al. TOF-SIMS characterization of impurity enrichment and redistribution in solid oxide electrolysis cells during operation[J]. Dalton Transactions, 2014,43(40):14949-14958. |
[70] | Schefold J, Brisse A, Zahid M . Electronic conduction of yttria-stabilized zirconia electrolyte in solid oxide cells operated in high temperature water electrolysis[J]. Journal of The Electrochemical Society, 2009,156(8):B897-B904. |
[71] | Wood A, He H P, Joia T , et al. Communication-electrolysis at high efficiency with remarkable hydrogen production rates[J]. Journal of The Electrochemical Society, 2016,163(5):F327-F329. |
[72] | Hong J, Kim H J, Park S Y , et al. Electrochemical performance and long-term durability of a 200 W-class solid oxide regenerative fuel cell stack[J]. International Journal of Hydrogen Energy, 2014,39(35):20819-20828. |
[73] | Fang Q, Blum L, Menzle N H . Performance and degradation of solid oxide electrolysis cells in stack[J]. Journal of The Electrochemical Society, 2015,16(8):F907-F912. |
[74] | Arias J . Hydrogen and fuel cells in Japan[EB/OL]. 2019, . |
[75] | Yildiz B, Kazimi M S . Efficiency of hydrogen production systems using alternative nuclear energy technologies[J]. International Journal of Hydrogen Energy, 2006,31(1):77-92. |
[76] | Stetson N . H2 Fuel R&D Overview[EB/OL]. 2019, . |
[77] | Buttler A, Spliethoff H . Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review[J]. Renewable & Sustainable Energy Reviews, 2018,82:2440-2454. |
[78] | Gotz M, Lefebvre J, Mors F , et al. Renewable power-to-gas: A technological and economic review[J]. Renewable Energy, 2016,85:1371-1390. |
[79] | Costa R, Due?as A D M, Futter G , et al. Solid oxide cells for power-to-X: Application & challenges[J]. ECS Transactions, 2019,91(1):2527-2536. |
[80] | Schiermeier Q . Renewable power: Germany’s energy gamble[J]. Nature, 2013,496(7444):156-158. |
[81] | Smith J D . Innovative management of carbon emissions from fossil plants[C]// The Advanced Combustion Engineering Research Center, 24th Annual ACERC Conference, February 25-26, 2010, Provo, UT. |
[82] | Posdziech O, Geiβler T, Schwarze F K , et al. System development and demonstration of large-scale high-temperature electrolysis[J]. ECS Transactions, 2019,91(1):2537-2546. |
[83] | Schwarze K, Posdziech O, Mermelstein J , et al. Operational results of an 150/30 kW RSOC system in an industrial environment[J]. Fuel Cells, 2019,19(4):374-380. |
/
〈 |
|
〉 |