核壳结构Ru@PtRu纳米花电催化剂的制备及碱性氢析出反应性能研究
收稿日期: 2020-02-24
修回日期: 2020-03-27
网络出版日期: 2020-04-14
基金资助
国家重点研发计划课题No(2019YFB1504501);大连理工大学重点专项No(DUT19ZD208);大连理工大学重点专项No(DUT20ZD208);中央引导地方专项No(2020JH6/10500021);辽宁省重点研发计划项目No(2020JH2/10100025);大连市重点学科重大项目资助No(2020JJ25CY003)
Core-Shell Structured Ru@PtRu Nanoflower Electrocatalysts toward Alkaline Hydrogen Evolution Reaction
Received date: 2020-02-24
Revised date: 2020-03-27
Online published: 2020-04-14
本文通过分步还原Ru、Pt前驱体,制备了以Ru为核、PtRu合金为壳的Ru@Pt0.24Ru纳米花电催化剂,其平均直径为16.5±4.0 nm. 利用高分辨电子显微镜、电感耦合等离子体原子发射光谱和X射线光电子能谱等表征了这种电催化剂的结构和组成. 在1 mol·L -1 KOH水溶液中,核壳结构Ru@Pt0.24Ru/C纳米花氢析出反应的过电位为22 mV(@10 mA·cm -2),耐久性测试后过电位增加至30 mV(@10 mA·cm -2),明显优于商业Pt/C电催化剂(初始值:60 mV@10 mA·cm -2,耐久性测试后:85 mV@10mA·cm -2). 显著提高的电化学活性可能源于核壳结构Ru@Pt0.24Ru纳米花的电子效应和几何效应,耐久性的改善可能源于核壳结构Ru@Pt0.24Ru纳米花结构的稳定性.
关键词: 纳米花; 核壳结构; Ru@Pt0.24Ru; 碱性氢析出反应
王学良 , 丛媛媛 , 邱晨曦 , 王盛杰 , 秦嘉琪 , 宋玉江 . 核壳结构Ru@PtRu纳米花电催化剂的制备及碱性氢析出反应性能研究[J]. 电化学, 2020 , 26(6) : 815 -824 . DOI: 10.13208/j.electrochem.200223
Water electrolysis for hydrogen production is beneficial for solving the problem of energy crisis and environmental issues. It is necessary to study highly active and cost-effective catalysts toward hydrogen evolution reaction (HER) to reduce the consumption of noble metals. Herein, we report the synthesis of core-shell structured Ru@Pt0.24Ru nanoflowers electrocatalyst by stepwise reduction of Ru and Pt precursors in the mixture of oleylamine and benzyl alcohol at 160 oC. The average diameter of the resultant Ru@Pt0.24Ru was 16.5±4.0 nm with a bulk atomic ratio between Pt and Ru of 0.24:1 and a surface ratio of 3.3:1 between Pt and Ru. Therefore, we speculate the formation of core-shell structure with Ru as the core and PtRu alloy as the shell. The performance of the electrocatalyst toward alkaline HER was tested in 1.0 mol·L -1 KOH aqueous solution. The Ru@Pt0.24Ru exhibited pronounced alkaline HER activity with a small overpotential of 22 mV at 10 mA·cm -2, a low Tafel slope of 43 mV·dec -1, and a high mass activity of 5.68 A·mg -1Pt+Ru at an overpotential of 100 mV, all largely surpassing commercial Pt/C (60 mV, 101 mV·dec -1, 1.53 A·mg -1Pt). The attained Ru@Pt0.24Ru also held outstanding long-term cycling stability. After 10,000 potential cycles from 0.1 to -0.1 V (vs. RHE), the overpotential increased to 30 mV at 10 mA·cm -2, while increased to 85 mV for Pt/C. The significantly improved electrochemical activity may be derived from the electronic and geometric effects of the electrocatalyst. The improvement of durability may be due to the stability of the flower-like dendritic morphology.
[1] | Cong Y Y, Yi B L, Song Y J . Hydrogen oxidation reaction in alkaline media: from mechanism to recent electrocatalysts[J]. Nano Energy, 2018,44:288-303. |
[2] | Staffell I, Scamman D, Abad A V , et al. The role of hydrogen and fuel cells in the global energy system[J]. Energy & Environmental Science, 2019,12(2):463-491. |
[3] | Zou X X, Zhang Y . Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015,44(15):5148-5180. |
[4] | Chen H M( 陈禾木), Qiu C X( 邱晨曦), Cong Y Y( 丛媛媛 ), et al. Acid treated carbon as anodic electrocatalysts toward direct ascorbic acid alkaline membrane fuel cells[J]. Journal of Electrochemistry( 电化学), 2018,24(6):748-756. |
[5] | Dincer I, Acar C . Review and evaluation of hydrogen production methods for better sustainability[J]. International Journal of Hydrogen Energy, 2015,40(34):11094-11111. |
[6] | Holladay J D, Hu J, King D L , et al. An overview of hydrogen production technologies[J]. Catalysis Today, 2009,139(4):244-260. |
[7] | Hong Y, Choi C H, Choi S I . Catalytic surface specificity of Ni(OH)2 -decorated Pt nanocubes for the hydrogen evolution reaction in an alkaline electrolyte[J]. ChemSusChem, 2019,12(17):4021-4028. |
[8] | Sheng W, Myint M, Chen J G , et al. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces[J]. Energy & Environmental Science, 2013,6(5):1509-1512. |
[9] | Tan Y W, Liu P, Chen L Y , et al. Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production[J]. Advanced Materials Interfaces, 2014,26(47):8023-8028. |
[10] | Kim J Y, Ahn H S, Bard A J . Surface interrogation scanning electrochemical microscopy for a photoelectrochemical reaction: water oxidation on a hematite surface[J]. Analytical Chemistry, 2018,90(5):3045-3049. |
[11] | Gong M, Zhou W, Tsai M C , et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis[J]. Nature Communications, 2014,5(1):1-6. |
[12] | Gao Y( 高雨), Zhou J( 周娟), Liu Y W( 刘欲文 ), et al. Hydrogen evolution properties on individual MoS2 nanosheets[J]. Journal of Electrochemistry( 电化学), 2016,22(6):590-595. |
[13] | Li Y( 李阳), Luo Z Y( 罗兆艳), Ge J J( 葛君杰 ), et al. Research progress in hydrogen evolution low noble/nonprecious metal catalysts of water electrolysis[J]. Journal of Electrochemistry( 电化学), 2018,24(6):572-588. |
[14] | Kibsgaard J, Chorkendorff I . Considerations for the scaling up of water splitting catalysts[J]. Nature Energy, 2019,4(6):430-433. |
[15] | Wang P T, Jiang K Z, Wang G M , et al. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution[J]. Angewandte Chemie International Edition, 2016,55(41):12859-12863. |
[16] | Zhang L, Roling L T, Wang X , et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets[J]. Science, 2015,349(6246):412-416. |
[17] | Zhao Z P, Liu H T, Gao W P , et al. Surface engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2018,140(29):9046-9050. |
[18] | Zhang X F, Meng H B, Chen H Y , et al. Bimetallic PtCo alloyed nanodendritic assemblies as an advanced efficient and robust electrocatalyst for highly efficient hydrogen evolution and oxygen reduction[J]. Journal of Alloys and Compounds, 2019,786:232-239. |
[19] | Saquib M, Halder A . Dealloyed Pt3Co nanoparticles with higher geometric strain for superior hydrogen evolution reaction[J]. Journal of Solid State Chemistry, 2018,262:229-236. |
[20] | Cao Z M, Chen Q L, Zhang J W , et al. Platinum nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction[J]. Nature Communications, 2017,8(1):15131. |
[21] | Li W Q, Zhi Y H, Zhang Z W , et al. Nano-single crystal coalesced PtCu nanospheres as robust bifunctional catalyst for hydrogen evolution and oxygen reduction reactions[J]. Journal of Catalysis, 2019,375:164-170. |
[22] | Zhong X, Wang L, Zhuang Z Z , et al. Double nanoporous structure with nanoporous PtFe embedded in graphene nanopores: highly efficient bifunctional electrocatalysts for hydrogen evolution and oxygen reduction[J]. Advanced Materials Interfaces, 2017,4(5):1601029. |
[23] | Niu Z, Becknell N, Yu Y , et al. Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts[J]. Nature Materials, 2016,15(11):1188-1194. |
[24] | Shi Y, Zhai T T, Zhou Y , et al. Atomic level tailoring of the electrocatalytic activity of Au-Pt core-shell nanoparticles with controllable Pt layers toward hydrogen evolution reaction[J]. Journal of Electroanalytical Chemistry, 2018,819:442-446. |
[25] | Ming M, Zhang Y, He C , et al. Room-temperature sustainable synjournal of selected platinum group metal (PGM = Ir, Rh, and Ru) nanocatalysts well-dispersed on porous carbon for efficient hydrogen evolution and oxidation[J]. Small, 2019,15(49):1903057. |
[26] | Xia J, Volokh M, Peng G , et al. Low-cost porous ruthenium layer deposited on nickel foam as a highly active universal-PH electrocatalyst for the hydrogen evolution reaction[J]. ChemSusChem, 2019,12(12):2780-2787. |
[27] | Li J( 李佳), Liu H Y( 刘会园), Lü Y( 吕洋 ), et al. Influence of counter electrode material during accelerated durability test of non-precious metal electrocatalysts in acidic medium[J]. Chinese Journal of Catalysis( 催化学报), 2016,37(7):1109-1118. |
[28] | Dal Santo V, Gallo A, Naldoni A , et al. Bimetallic heterogeneous catalysts for hydrogen production[J]. Catalysis Today, 2012,197(1):190-205. |
[29] | Han Q, Li D C, Wang L J , et al. Influence of iridium content on the performance and stability of Pd-Ir/C catalysts for the decomposition of hydrogen iodide in the iodine-sulfur cycle[J]. International journal of hydrogen energy, 2014,39(25):13443-13447. |
[30] | Huang L, Zhang X P, Wang Q Q , et al. Shape control of Pt-Ru nanocrystals: tuning surface structure for enhanced electrocatalytic methanol oxidation[J]. Journal of the American Chemical Society, 2018,140(3):1142-1147. |
[31] | Lu S, Eid K, Ge D , et al. One pot synjournal of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction[J]. Nanoscale, 2017,9(3):1033-1039. |
[32] | Cong Y Y, McCrum I T, Gao X Q, et al. Uniform Pd0.33Ir0.67 nanoparticles supported on nitrogen-doped carbon with remarkable activity toward the alkaline hydrogen oxidation reaction[J]. Journal of Materials Chemistry A, 2019,7(7):3161-3169. |
[33] | Li Y J, Pei W, He J T , et al. Hybrids of PtRu nanoclusters and nlack phosphorus nanosheets for highly efficient alkaline hydrogen evolution reaction[J]. ACS Catalysis, 2019,9(12):10870-10875. |
[34] | Wang P T, Zhang X, Zhang J , et al. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis[J]. Nature Communications, 2017,8(1):1-9. |
[35] | Li M F, Huang Y, Duan X F . Single atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis[J]. Nature Catalysis, 2019,2:495-503. |
[36] | Meng L M, Rui K, Zhao G Q , et al. Platinum/Nickel bicarbonate heterostructures towards accelerated hydrogen evolution under alkaline conditions[J]. Angewandte Chemie International Edition, 2019,58(16):5432-5437. |
[37] | Tian X Y, Zhao P C, Sheng W C . Hydrogen evolution and oxidation: mechanistic studies and material advances[J]. Advanced Materials, 2019,31(31):1808066. |
[38] | Lu J J, Zhang L S, Jing S Y , et al. Remarkably efficient PtRh alloyed with nanoscale WC for hydrogen evolution in alkaline solution[J]. International Journal of Hydrogen Energy, 2017,42(9):5993-5999. |
[39] | Xie Y F, Cai J Y, Wu Y S , et al. Boosting water dissociation kinetics on Pt-Ni nanowires by Ni-induced orbital tuning[J]. Advanced Materials, 2019,31(16):1807780. |
[40] | Bu L Z, Ding J B, Guo S J , et al. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts[J]. Advanced Materials, 2015,27(44):7204-7212. |
[41] | Luo M C, Sun Y J, Zhang X , et al. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis[J]. Advanced Materials, 2018,30(10):1705515. |
[42] | Luo M C, Guo S J . Strain-controlled electrocatalysis on multimetallic nanomaterials[J]. Nature Reviews Materials, 2017,2(11):1-13. |
[43] | Lv H F, Xi Z, Chen Z Z , et al. A new core/shell NiAu/Au nanoparticle catalyst with Pt-like activity for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2015,137(18):5859-5862. |
[44] | Feng J X, Tong S Y, Tong Y X , et al. Pt like hydrogen evolution electrocatalysis on PANI/CoP hybrid nanowires by weakening the shackles of hydrogen Ions on the surfaces of catalysts[J]. Journal of the American Chemical Society, 2018,140(15):5118-5126. |
[45] | Wang S J, Tian D X, Wang X L , et al. Uniform PdH0.33 nanodendrites with a high oxygen reduction activity tuned by lattice H[J]. Electrochemistry Communications, 2019,102:67-71. |
[46] | Dai K Q, Gao X Y, Yin L X , et al. Bifunctional self-assembled Ni0.7Co0.3P nanoflowers for efficient electrochemical water splitting in alkaline media[J]. Applied Surface Science, 2019,494:22-28. |
[47] | Si W F( 司维峰), Li H Q( 李焕巧), Yin J( 尹杰 ), et al. Synjournal, purification, and electrocatalytic activity of platinum nanocatalyst with globular dendritic structure[J]. Chinese Journal of Catalysis( 催化学报), 2013,33(9):1601-1607. |
/
〈 |
|
〉 |