欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

反应条件对铜催化CO2电还原的影响

  • 朱畅 ,
  • 陈为 ,
  • 宋艳芳 ,
  • 董笑 ,
  • 李桂花 ,
  • 魏伟 ,
  • 孙予罕
展开
  • 1. 中国科学院上海高等研究院,中国科学院低碳转化科学与工程重点实验室,上海 201210
    2. 中国科学院大学,北京 100049
    3. 上海科技大学物质科学与技术学院,上海 201210

收稿日期: 2019-12-30

  修回日期: 2020-02-25

  网络出版日期: 2020-04-14

Effect of Reaction Conditions on Cu⁃Catalyzed CO2 Electroreduction

  • Chang ZHU ,
  • Wei CHEN ,
  • Yan-fang SONG ,
  • Xiao DONG ,
  • Gui-hua LI ,
  • Wei WEI ,
  • Yu-han SUN
Expand
  • 1. CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
    2. University of Chinese Academy of Sciences, Beijing, 100049, China
    3. School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China

Received date: 2019-12-30

  Revised date: 2020-02-25

  Online published: 2020-04-14

摘要

工业规模的化石能源消耗导致大气中二氧化碳含量不断增加,CO2转化利用成为人们日益关注的热点问题. 金属铜因其成本低廉、储量丰富,并且具有独特的CO2亲和力能够生成多碳化合物,是目前CO2电还原中研究最为广泛深入的电极材料. 由于阴、阳离子的特征吸附对Cu电极性能有显著影响,并且不同反应体系中对Cu电极上CO2吸附、活化影响也有所不同,因此导致金属Cu电极上报道的电催化活性、产物种类与选择性等都非常宽泛. 基于此,有必要系统地研究各种反应条件对金属Cu电极电催化CO2还原性能的影响. 作者选择了平均粒径为600 nm的商品化金属Cu颗粒作为电还原CO2的催化剂,研究了不同反应条件包括各种常用电解质溶液、KHCO3的浓度以及H型电解池和流动池. 实验结果表明,浓度为0.5 mol·L -1的KHCO3作为电解质溶液具有较好催化活性和较高的产物分电流密度,流动池可以进一步提高主要产物甲酸盐和CO的分电流密度. 本研究工作从反应条件的角度对CO2还原的电催化转化进行了系统研究,有助于理解电解液和反应器等因素对CO2电还原反应过程的影响规律.

本文引用格式

朱畅 , 陈为 , 宋艳芳 , 董笑 , 李桂花 , 魏伟 , 孙予罕 . 反应条件对铜催化CO2电还原的影响[J]. 电化学, 2020 , 26(6) : 797 -807 . DOI: 10.13208/j.electrochem.191228

Abstract

Electrochemical conversion of carbon dioxide (CO2) driven by renewable electricity that can meet both carbon emission reduction and renewable energy utilization has been rapidly developed in recent years. Copper (Cu) catalyst has long been a promising candidate for CO2 electroreduction applications because of its natural abundance and specific capability of producing a substantial amount of C2 products. However, various metallic Cu electrodes reported have been significantly influenced by the adsorption of certain cation/anion ions, resulting in wide-span catalytic activities and selectivity for various products. In addition, a recent report demonstrated that by virtue of gas-diffusion flow cell with Cu cathode, remarkable ethylene production was achieved in CO2 electroreduction. It is, therefore, desirable to systematically investigate the effect of reaction conditions on the performances of Cu-catalyzed CO2 electroreduction. Here we chose the commercial Cu particles with an average size of 600 nm as the catalyst for CO2 electroreduction and investigated the electrocatalytic performances under various reaction conditions, including the commonly used electrolyte solutions, the different potassium hydrogen carbonate (KHCO3) concentrations, as well as H-type and gas-diffusion flow cells. The results of linear sweep voltammetry and potentiostatic CO2 electrolysis showed that KHCO3 as an electrolyte solution with a concentration of 0.5 mol?L-1 offered good catalytic activities and high current densities, and the gas-diffusion flow cell could further improve the Faradaic efficiencies and partial current densities of the main products formate and CO. This work provides a fundamental insight to the electrocatalytic conversion of CO2 reduction from the view of reaction conditions.

参考文献

[1] Caldeira K, Wickett M E . Anthropogenic carbon and ocean pH[J]. Nature, 2003,425(6956):365.
[2] White J W C, Ciais P, Figge R A , et al. A high-resolution record of atmospheric CO2 content from carbon isotopes in peat[J]. Nature, 1994,367(6459):153-156.
[3] Chu S, Majumdar A . Opportunities and challenges for a sustainable energy future[J]. Nature, 2012,488(7411):294-303.
[4] Obama B . The irreversible momentum of clean energy[J]. Science, 2017,355(6321):126-129.
[5] Zhang X R( 张旭锐), Shao X L( 邵晓琳), Yi J( 易金 ), et al. Statuses, Challenges and strategies in the development of low-temperature carbon dioxide electroreduction technology[J]. Journal of Electrochemistry( 电化学), 2019,25(4):413-425.
[6] Wang L M, Chen W L, Zhang D D , et al. Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms[J]. Chemical Society Reviews, 2019,48(21):5310-5349.
[7] Song R B, Zhu W, Fu J , et al. Electrode materials engineering in electrocatalytic CO2 reduction: Energy input and conversion efficiency[J]. Advanced Materials, 2019,32(27):1903796.
[8] Askgaard T S, Norskov J K, Ovesen C V , et al. A kinetic model of methanol synjournal[J]. Journal of Catalysis, 1995,156(2):229-242.
[9] Iglesias M L, de Vries C, Claeys M , et al. Chemical energy storage in gaseous hydrocarbons via iron Fischer-Tropsch synjournal from H2/CO2 Kinetics, selectivity and process considerations[J]. Catalysis Today, 2015,242:184-192.
[10] Liu J J, Peng H G, Liu W M , et al. Sn modification on Ni/Al2O3: Designing potent coke-resistant catalysts for methane dry reforming[J]. Chemcatchem, 2014,6(7):2095-2104.
[11] Birdja Y Y, Pérez-Gallent E, Figueiredo M C , et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019,4(9):732-745.
[12] Zhou W, Cheng K, Kang J C , et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019,48(12):3193-3228.
[13] Liu M, Pang Y J, Zhang B , et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration[J]. Nature, 2016,537(7620):382-386.
[14] Bai X F, Chen W, Zhao C C , et al. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy[J]. Angewandte Chemie International Edition, 2017,56(40):12219-12223.
[15] Gao S, Lin Y, Jiao X C , et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016,529(7584):68-71.
[16] Yang F( 杨帆), Deng P L( 邓培林), Han Y J( 韩优嘉 ), et al. Copper-based compounds for electrochemical reduction of carbon dioxide[J]. Journal of Electrochemistry( 电化学), 2019,25(4):426-444.
[17] Lim D H, Jo J H, Shin D Y , et al. Carbon dioxide conversion into hydrocarbon fuels on defective graphene supported Cu nanoparticles from first principles[J]. Nanoscale, 2014,6(10):5087-5092.
[18] Keerthiga G, Viswanathan B, Chetty R . Electrochemical reduction of CO2 on electrodeposited Cu electrodes crystalline phase sensitivity on selectivity[J]. Catalysis Today, 2015,245:68-73.
[19] Chen C S, Handoko A D, Wan J H , et al. Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals[J]. Catalysis Science & Technology, 2015,5(1):161-168.
[20] Lei W( 雷文), Xiao W P( 肖卫平), Wang D L( 王得丽 ), et al. Recent progress in copper-based catalysts for electrochemical CO2 reduction[J]. Journal of Electrochemistry( 电化学), 2019,25(4):455-466.
[21] Hori Y, Kikuchi K, Suzuki S . Production of CO and CH4 in electrochemical reduction of CO2 at metal-electrodes in aqueous hydrogencarbonate solution[J]. Chemistry Letters, 1985,14:1695-1698.
[22] Hori Y, Murata A, Takahashi R . Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1989,85(8):2309-2326.
[23] Lv J J, Jouny M, Luc W , et al. A highly porous copper electrocatalyst for carbon dioxide reduction[J]. Advanced Materials, 2018,30(49):1803111.
[24] Garza A J, Bell A T, Head-Gordon M, Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products[J]. ACS Catalysis, 2018,8(2):1490-1499.
[25] Ren S X, Joulie D, Salvatore D , et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell[J]. Science, 2019,365(6451):367-369.
[26] Salvatore D A, Weekes D M, He J , et al. Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane[J]. ACS Energy Letters, 2017,3(1):149-154.
[27] Weng L C, Bell A T, Weber A Z . Modeling gas-diffusion electrodes for CO2 reduction[J]. Physical Chemistry Chemical Physics, 2018,20(25):16973-16984.
[28] Dinh C T, Burdyny T, Kibria M G , et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018,360(6390):783-787.
[29] Mistry H, Varela A S, Bonifacio C S , et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nature Communications, 2016,7:12123.
[30] Reske R, Mistry H, Behafarid F , et al. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles[J]. Journal of the American Chemical Society, 2014,136(19):6978-6986.
[31] Birdja Y Y, Pérez-Gallent E, Figueiredo M C , et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019,4(9):732-745.
[32] Spurgeon J M, Kumar B . A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products[J]. Energy & Environmental Science, 2018,11(6), 1536-1551.
[33] Min X, Kanan M W . Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway[J]. Journal of the American Chemical Society, 2015,137(14):4701-4708.
[34] Gao D F, Scholten F, Roldan Cuenya B . Improved CO2 Electroreduction performance on plasma-activated Cu catalysts via electrolyte design: Halide effect[J]. ACS Catalysis, 2017,7(8):5112-5120.
[35] Varela A S, Ju W, Reier T , et al. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides[J]. ACS Catalysis, 2016,6(4):2136-2144.
[36] Irina V C, Sathish P . Activation of CO2 at the electrodeelectrolyte interface by a co-adsorbed cation and an electric field[J]. Physical Chemistry Chemical Physics, 2019,21(17), 8797-8807.
[37] Yoon Y, Hall A S, Surendranath Y . Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels[J]. Angewandte Chemie International Edition. 2016,55(49):15282-15286.
[38] Zhu C Q, Wang Q N, Wu C . Rapid and scalable synjournal of bismuth dendrites on copper mesh as a high-performance cathode for electroreduction of CO2 to formate[J]. Journal of CO2 Utilization, 2020,36:96-104.
[39] Singh MR, Clark EL, Bell AT . Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide[J]. Physical Chemistry Che-micalPhysics, 2015,17(29), 18924-18936.
[40] Kuhl K P, Cave E R, Abram D N , et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science, 2012,5(5):7050-7059.
[41] Zhuang T T, Liang Z Q, Seifitokaldani A , et al. Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols[J]. Nature Catalysis, 2018,1(6):421-428.
[42] Gao S, Sun Z T, Liu W , et al. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction[J]. Nature Communications, 2017,8:14503.
[43] Zhao C N, Dai X Y, Yao T , et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2[J]. Journal of the American Chemical Society, 2017,139(24):8078-8081.
[44] Dunwell M, Lu Q, Heyes J M , et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold[J]. Journal of the American Chemical Society, 2017,139(10):3774-3783.
[45] Bitar Z, Fecant A, Trela-Baudot E , et al. Electrocatalytic reduction of carbon dioxide on indium coated gas diffusion electrodes-comparison with indium foil[J]. Applied Catalysis B - Environmental, 2016,189:172-180.
[46] Kim B, Hillman F, Ariyoshi M , et al. Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO[J]. Journal of Power Sources, 2016,312:192-198.
[47] Li F W, Thevenon A, Rosas-Hernandez A , et al. Molecular tuning of CO2-to-ethylene conversion[J]. Nature, 2019,577(7791):509-513.
[48] Singh M R, Kwon Y, Lum Y , et al. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu[J]. Journal of the American Chemical Society, 2016,138(39):13006-13012.
[49] Li Q Y, Shi F, Shen F X , et al. Electrochemical reduction of CO2 into CO in N-methyl pyrrolidone/tetrabutylammonium perchlorate in two-compartment electrolysis cell[J]. Journal of Electroanalytical Chemistry, 2016,785:229-134.
文章导航

/