欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

离子液体凝胶聚合物电解质的三元组分相互作用研究

  • 潘晓娜 ,
  • 刘丽来 ,
  • 王治璞 ,
  • 王丹 ,
  • 李云 ,
  • 杨培霞 ,
  • 张锦秋 ,
  • 安茂忠
展开
  • 1. 哈尔滨工业大学化工与化学学院,黑龙江 哈尔滨 150001
    2. 黑龙江科技大学 环境与化工学院,黑龙江省 哈尔滨 150001

收稿日期: 2019-11-20

  修回日期: 2020-01-05

  网络出版日期: 2020-02-14

基金资助

国家自然基金项目(No. 21878061)和国家自然科学基金项目(No. 51604102)资助


The Interaction of Ternary Components of Ionic Liquid Gel Polymer Electrolytes for Lithium Metal Batteries

  • Xiao-na PAN ,
  • Li-lai LIU ,
  • Zhi-pu WANG ,
  • Dan WANG ,
  • Yun LI ,
  • Pei-xia YANG ,
  • Jin-qiu ZHANG ,
  • Mao-zhong AN
Expand
  • 1. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001,Heilongjiang
    2. School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150001, Heilongjiang

Received date: 2019-11-20

  Revised date: 2020-01-05

  Online published: 2020-02-14

摘要

采用Raman光谱、傅里叶转换红外光谱和X-射线衍射光谱研究N-甲基-N-丙基哌啶双三氟甲磺酸亚胺离子液体(PP13TFSI)和双三氟甲磺酸亚胺锂盐(LiTFSI)对PVDF-HFP聚合物聚合方式的影响,结果表明,PP13TFSI、LiTFSI和PVDF-HFP是共混存在的,同时加入PP13TFSI和LiTFSI会使聚合物的聚合方式由晶体结构转变为无定形结构. 通过对电解质及其各组分的线性扫描伏安曲线和热重曲线分析可知,溶剂N-甲基吡咯烷酮(NMP)容易残留在凝胶聚合物电解质(ILGPE)中,这会降低ILGPE的电化学稳定性和热稳定性. 作者对固态LiFePO4|ILGPE|Li电池的倍率性能进行了研究,实验结果表明其具有较好的倍率性能,当电池倍率由C/10增大至2C,然后再回到C/10时,其容量可以恢复到原来的90.9%左右. 该研究结果对理解PP13TFSI和LiTFSI在ILGPE中的作用机理具有重要的意义.

本文引用格式

潘晓娜 , 刘丽来 , 王治璞 , 王丹 , 李云 , 杨培霞 , 张锦秋 , 安茂忠 . 离子液体凝胶聚合物电解质的三元组分相互作用研究[J]. 电化学, 2020 , 26(3) : 406 -412 . DOI: 10.13208/j.electrochem.191120

Abstract

Ionically conductive gel polymer electrolyte is an excellent candidate due to its inflammable, nonvolatile and high thermal stability as compared to commercial liquid electrolytes which are usually flammable, volatile, and containing toxic organic solution as solvent, The synthesis and application of ionic gel polymer electrolytes in lithium ion/metal batteries have been previously reported. However, the interaction effects of N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13TFSI) ionic liquid (as plasticizer) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) on PVDF-HFP polymer remain unclear. In this work, the molecular structure of ionic liquid gel polymer electrolyte (ILGPE) composed of PP13TFSI, LiTFSI and PVDF-HFP was studied by Raman spectroscopy and Fourier-transform infrared spectroscopy (FTIR). Meanwhile, X-ray diffraction (XRD) analysis was performed to qualify the crystallization of PVDF-HFP polymer in the ILGPE with or without PP13TFSI or/and LiTFSI to investigate ionic liquid or/and LiTFSI impact on PVDF-HFP polymer. The results showed that PP13TFSI, LiTFSI and PVDF-HFP were physical-blending without chemical reaction, but with molecular coordination with PVDF-HFP polymer chain. In addition, the crystallization of PVDF-HFP could be changed by additions of PP13TFSI and LiTFSI at the same time, and the ionic conductivity could be improved with increasing amorphous phase in polymer matrix. The electrochemical stability window and thermal stability of ILGPE became worse with the N-methyl-2-pyrrolidone (NMP) residue inside the ILGPE. The LiFePO4/Li battery with the optimized ILGPE (the weight ratio of ionic liquid, LiTFSI, and PVDF-HFP polymer was 3/1/1) showed a good C-rate capability at room temperature. In summary, PP13TFSI and LiTFSI could coordinate with PVDF-HFP polymer chain, and no chemical reaction took place among the three compounds during preparing ILGPE. Furthermore, it is necessary to remove NMP solvent from ILGPE during drying process to improve the electrochemical stability window and thermal stability of ILGPE.

参考文献

[1] Ai X P( 艾新平), Gao Y L( 曹余良), Yang H X( 杨汉西). Self-activating safety mechanisms for Li-ion batteries[J]. Journal of Electrochemistryl( 电化学), 2010,16(1):6-10.
[2] Chen D Q( 陈丁琼), Yang Y( 杨阳), Li Q L( 李秋丽), et al. Research progresses in Si-based anode materials for lithium-ion batteries[J]. Journal of Electrochemistryl( 电化学), 2011,22(5):489-488.
[3] Yang Y( 杨勇). 锂离子电池的发现与发展-兼谈电池材料与固态电化学[J]. Journal of Electrochemistryl( 电化学), 2019,25(5):614-615.
[4] Gu Y R( 顾月茹), Zhao W M( 赵卫民), Su C H( 苏长虎), et al. Reaearch progress in improvement for low temperature performance of lithium-ion batteries[J]. Journal of Electrochemistryl( 电化学), 2018,24(5):488-496.
[5] Sheng O W, Jin C B, Luo J M, et al. Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance[J]. Nano Letters, 2018,18(5):3104-3122.
[6] Park K, Yu B C, Goodenough J B. Electrochemical and chemical properties of Na2NiO2 as a cathode additive for a rechargeable sodium battery[J]. Chemistry of Materials, 2015,27(19):6682-6688.
[7] Yi J, Liu X Z, Guo S H, et al. Novel stable gel polymer electrolyte?: toward a high safety and long life Li-air battery[J]. ACS Applied Materials and Interface. 2015,42(7):23798-23804.
[8] Pan X N, Liu T Y, Kauz D J, et al. High-performance N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide/poly(vinylidene fluoride-hexafluoropropylene) gel polymer electrolytes for lithium metal batteries[J]. Journal of Power Sources, 2018,403:127-136.
[9] Raji A R O, Salvatierra R V, Kim N D, et al. Lithium batteries with nearly maximum metal storage[J]. ACS Nano, 2017,11:6362-6369.
[10] Stich M, G?ttlinger M, Kurniawan M, et al. Hydrolysis of LiPF6 in carbonate-based electrolytes for lithium-ion batteries and in aqueous media[J]. Journal of Physical Chemistry C, 2018,122(16):8836-8842.
[11] Kawamura T, Kimura A, Egashira M, et al. Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells[J]. Journal of Power Sources, 2002,104(2):260-264.
[12] Hu G X( 胡广侠), Xie J Y( 解晶莹). Some consideration for lithium-ion cells safety[J]. Journal of Electrochemistryl( 电化学), 2002,8(3):245-251.
[13] Chen Y H( 陈玉红), Tang Z Y( 唐致远), He Y B( 贺艳兵), et al. Research of explosion mechanism of lithium-ion battery[J]. Journal of Electrochemistryl( 电化学). 2006,12(3):266-270.
[14] Yang N C( 杨纳川), Wang Y( 王玉), Shuai Y( 帅毅), Chen K H( 陈康华). Research on preparation and properties of low cost sulfide solid electrolytes Li6-xPS5-xClx[J]. Journal of Electrochemistryl( 电化学), DOI: 10.13208/j.electrochem.190715.
[15] Cheng H( 程琥), Nie X Y( 聂晓燕), Shen Y D( 申叶丹). Performance of piperidine ionic liquid based mixed electrolyte in Li/LiCoO2 cell[J]. Journal of Electrochemistryl( 电化学), 2017,23(1):59-63.
[16] Jin Y D, Zhang J H, Song J Z, et al. Functionalized ionic liquids based on quaternary ammonium cations with two ether groups as new electrolytes for Li/LiFePO4 secondary battery[J]. Journal of Power Sources, 2014,254:137-147.
[17] Liu Z D, Feng Y, Li W L. High dielectric constant and low loss of polymeric dielectric composites filled by carbon nanotubes adhering BaTiO3 hybrid particles[J]. RSC Advances, 2015,5(37):29017-29021.
[18] Wang W, Alexandridis P. Composite polymer electrolytes: nanoparticles affect structure and properties[J]. Polymers, 2016, 8(11): UNSP 387.
[19] Zhang X Y, Yang L, Hao F, et al. Lithium-excess research of cathode material Li2MnTiO4 for lithium-ion batteries[J]. Nanomater, 2015,5(4):1985-1994.
[20] Wang C, Zhang H R, Li J D, et al. The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode[J]. Journal of Power Sources, 2018,397:157-161.
[21] Song A M, Huang Y, Zhong X P, et al. Gel polymer electrolyte with high performances based on pure natural polymer matrix of potato starch composite lignocellulose[J]. Electrochimica Acta, 2017,245:981-992.
文章导航

/