原子力显微镜在锂离子电池界面研究中的应用
收稿日期: 2019-06-03
修回日期: 2019-11-12
网络出版日期: 2020-01-16
基金资助
国家自然科学基金项目(21625304);国家自然科学基金项目(21733012);国家自然科学基金项目(21773290);中国科学技术部国家重点研发计划项目(2016YFB0100102)
Atomic Force Microscopic Characterization of Solid Electrolyte Interphase in Lithium Ion Batteries
Received date: 2019-06-03
Revised date: 2019-11-12
Online published: 2020-01-16
近几年,电动汽车市场的飞速发展对锂离子电池的能量密度和安全性提出了更高的要求. 然而,过去近30年,在应用终端市场的大力推动下,锂离子电池的电极材料、电池结构设计和生产工艺都已经发展得比较成熟,容量提升空间已经比较小,想要进一步提高现有锂离子电池的能量密度,需要对锂离子电池的整个系统和工作原理有更深刻和全面的理解. 存在于锂离子电池电极材料和电解液之间的固态电解质中间相(solid electrolyte interphase,SEI)已被证明是一个影响电池性能的重要因素,目前学术界和产业界对其认识还不是很全面,尤其是高分辨、工况下以及多技术联合的界面表征工作较少见到报道. 原子力显微镜(atomic force microscopy,AFM)通过探测针尖与样品之间的相互作用力,能够在原子尺度上原位表征液态电池界面的形貌以及力学特性,对于电极界面的理解和调控非常重要. 本文作者通过总结近几年AFM在锂离子电池SEI研究的中的应用,并结合本课题组在该领域的工作,对AFM技术在锂离子电池SEI研究中的应用做了总结和展望,对加深锂离子电池界面的理解,以及构建稳定锂电池界面的相关研究有参考意义.
董庆雨 , 褚艳丽 , 沈炎宾 , 陈立桅 . 原子力显微镜在锂离子电池界面研究中的应用[J]. 电化学, 2020 , 26(1) : 19 -31 . DOI: 10.13208/j.electrochem.181246
In recent years, the rapid growing in the electric vehicle market has raised higher requirement on the lithium-ion batteries (LIBs) performance towards energy density and safety. However, considering the successful development of LIBs techniques in the past 30 years, there is little room left for improving the LIBs performance on the aspects related to the electrode materials, battery structure design and production processes. It is important to pursue more comprehensive fundamental understanding in the entire system and working principle of LIBs. Solid electrolyte interphase (SEI), existing between the electrode material and the electrolyte, has been proved to be an important factor affecting the performance of LIBs. However, at present, researchers both in the academia and industry still do not have full understanding on the SEI. Limited reports on SEI research with high resolution, in operando, and multi-technology combined characterization are available. Atomic force microscopy (AFM), which works based on detecting the interaction force between the AFM probe tip and the measured sample, can in operando characterize the morphological and mechanical properties of SEI at a liquid state with atomic scale resolution. This is very important for the understanding and regulation of SEI in LIBs. In this work, we summarize the application of AFM in investigating the SEI in LIBs in recent years by mainly introducing the work done in our research group in this field. This review will contribute to the understanding and regulation of LIBs interface towards construction of a high-performance LIBs with stable SEI.
[1] | Dey A N . Film formation on lithium anode in propylene carbonate[J]. Journal of The Electrochemical Society, 1970, 117(8): C248-&. |
[2] | Peled E . The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems the solid electrolyte interphase model[J]. Journal of The Electrochemical Society, 1979,126(12):2047-2051. |
[3] | Peled E, Golodnitsky D, Ardel G . Advanced model for solid electrolyte interphase electrodes in liquid and polymerelectrolytes[J]. Journal of The Electrochemical Society, 1997,144(8):L208-L210. |
[4] | Aurbach D, Markovsky B, Levi M D , et al. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries[J]. Journal of Power Sources, 1999,81:95-111. |
[5] | Li H, Huang X J, Chen L Q . Direct imaging of the passivating film and microstructure of nanometer-scale SnO anodes in lithium rechargeable batteries[J]. Electrochemical and Solid State Letters, 1998,1(6):241-243. |
[6] | Wang Q, Li H, Chen L Q , et al. Investigation of lithium storage in bamboo-like CNTs by HRTEM[J]. Journal of the Electrochemical Society, 2003,150(9):A1281-A1286. |
[7] | Zhong K F, Xia X, Zhang B , et al. MnO powder as anode active materials for lithium ion batteries[J]. Journal of Power Sources, 2010,195(10):3300-3308. |
[8] | Cheng X B, Zhang R, Zhao C Z , et al. A review of solid electrolyte interphases on lithium metal anode[J]. Advanced Science, 2016,3(3):1500213. |
[9] | Choi N S, Yew K H, Lee K Y , et al. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode[J]. Journal of Power Sources, 2006,161(2):1254-1259. |
[10] | He Y B, Liu M, Huang Z D , et al. Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries[J]. Journal of Power Sources, 2013,239:269-276. |
[11] | Li N W, Yin Y X, Yang C P , et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2016,28(9):1853-1858. |
[12] | Peled E, Menachem C, Bartow D , et al. Improved graphite anode for lithium-ion batteries Chemically bonded solid electrolyte interface and nanochannel formation[J]. Journal of The Electrochemical Society, 1996,143(1):L4-L7. |
[13] | Sazhin S V, Gering K L, Harrup M K , et al. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes and Solid Electrolyte Interphases[J]. Journal of The Electrochemical Society, 2014,161(3):A393-A402. |
[14] | Broussely M, Herreyre S, Biensan P , et al. Aging mechanism in Li ion cells and calendar life predictions[J]. Journal of Power Sources, 2001, 97-98:13-21. |
[15] | Wang F M, Wang H Y, Yu M H , et al. Differential pulse effects of solid electrolyte interface formation for improving performance on high-power lithium ion battery[J]. Journal of Power Sources, 2011,196(23):10395-10400. |
[16] | Yang D J, Zhao H L, Wang J P , et al. Effects of constant voltage at low potential on the formation of LiMnO2/graphite lithium ion battery[J]. Journal of Solid State Electrochemistry, 2014,18(7):1907-1914. |
[17] | Schmitz R W, Murmann P, Schmitz R , et al. Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: Systematic electrochemical characterization and detailed analysis by spectroscopic methods[J]. Progress in Solid State Chemistry, 2014,42(4):65-84. |
[18] | Xu C, Lindgren F, Philippe B , et al. Improved performance of the silicon anode for li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive[J]. Chemistry of Materials, 2015,27(7):2591-2599. |
[19] | Xu M Q, Zhou L, Hao L S , et al. Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries[J]. Journal of Power Sources, 2011,196(16):6794-6801. |
[20] | Zhang X Q, Cheng X B, Chen X , et al. Fluoroethylene carbonate additives to render uniform li deposits in lithium metal batteries[J]. Advanced Functional Materials, 2017,27(10):1605989. |
[21] | Ota H, Sakata Y, Inoue A , et al. Analysis of vinylene carbonate derived SEI layers on graphite anode[J]. Journal of The Electrochemical Society, 2004,151(10):A1659-A1669. |
[22] | Nowak S, Winter M . Review-chemical analysis for a better understanding of aging and degradation mechanisms of non-aqueous electrolytes for lithium ion batteries: method development, application and lessons learned[J]. Journal of The Electrochemical Society, 2015,162(14):A2500-A2508. |
[23] | Haregewoin A M, Wotango A S, Hwang B J . Electrolyte additives for lithium ion battery electrodes: progress and perspectives[J]. Energy & Environmental Science, 2016,9(6):1955-1988. |
[24] | Delp S A, Borodin O, Olguin M , et al. Importance of reduction and oxidation stability of high voltage electrolytes and additives[J]. Electrochimica Acta, 2016,209:498-510. |
[25] | Ein-Eli Y . A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of Li-ion cells[J]. Electrochemical and Solid State Letters, 1999,2(5):212-214. |
[26] | Malmgren S, Ciosek K, Hahlin M , et al. Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy[J]. Electrochimica Acta, 2013,97:23-32. |
[27] | Sacci R L, Dudney N J, More K L , et al. Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy[J]. Chemical Communications, 2014,50(17):2104-2107. |
[28] | Tang C Y, Haasch R T, Dillon S J . In situ X-ray photoelectron and Auger electron spectroscopic characterization of reaction mechanisms during Li-ion cycling[J]. Chemical Communications, 2016,52(90):13257-13260. |
[29] | Li W D, Dolocan A, Oh P , et al. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries[J]. Nature Communications, 2017,8:14589. |
[30] | Besenhard J O, Winter M, Yang J , et al. Filming mechanism of ithium-carbon anodes in organic and inorganic electrolytes[J]. Journal of Power Sources, 1995,54(2):228-231. |
[31] | Lee S H, You H G, Han K S , et al. A new approach to surface properties of solid electrolyte interphase on a graphite negative electrode[J]. Journal of Power Sources, 2014,247:307-313. |
[32] | Strelcov E, Cothren J, Leonard D , et al. In situ SEM study of lithium intercalation in individual V2O5 nanowires[J]. Nanoscale, 2015,7(7):3022-3027. |
[33] | Joshi T, Eom K, Yushin G , et al. Effects of dissolved transition metals on the electrochemical performance and SEI growth in lithium-ion batteries[J]. Journal of The Electrochemical Society, 2014,161(12):A1915-A1921. |
[34] | Etiemble A, Tranchot A, Douillard T , et al. Evolution of the 3D Microstructure of a Si-based electrode for Li-ion batteries investigated by FIB/SEM tomography[J]. Journal of The Electrochemical Society, 2016,163(8):A1550-A1559. |
[35] | Bordes A, Eom K, Fuller T F . The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes[J]. Journal of Power Sources, 2014,257:163-169. |
[36] | Leblebici S Y, Leppert L, Li Y , et al. Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite[J]. Nature Energy, 2016,1:16093. |
[37] | Jiang K Z, Zhao D D, Guo S J , et al. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires[J]. Science Advances, 2017,3(2):e1601705. |
[38] | Rohm H, Leonhard T, Hoffmannbc M J , et al. Ferroelectric domains in methylammonium lead iodide perovskite thin-films[J]. Energy & Environmental Science, 2017,10(4):950-955. |
[39] | Liu Y H, Zhao J B, Li Z K , et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells[J]. Nature Communications, 2014,5:5293. |
[40] | Chen Q, Mao L, Li Y W , et al. Quantitative operando visualization of the energy band depth profile in solar cells[J]. Nature Communications, 2015,6:7745. |
[41] | Dazzi A, Prater C B, Hu Q C , et al. AFM-IR: Combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization[J]. Applied Spectroscopy, 2012,66(12):1365-1384. |
[42] | Lu F, Jin M Z, Belkin M A . Tip-enhanced infrared nanospectroscopy via molecular expansion force detection[J]. Nature Photonics, 2014,8(4):307-312. |
[43] | Barbosa E F, Silva L P . Nanoscale characterization of synthetic polymeric porous membranes: Scrutinizing their stiffness, roughness, and chemical composition[J]. Journal of Membrane Science, 2012,407:128-135. |
[44] | Tang F G, Bao P T, Su Z H . Analysis of nanodomain composition in high-impact polypropylene by atomic force microscopy-infrared[J]. Analytical Chemistry, 2016,88(9):4926-4930. |
[45] | Brown P S, Bhushan B . Durable, superoleophobic polymer-nanoparticle composite surfaces with re-entrant geometry via solvent-induced phase transformation[J]. Scientific Reports, 2016,6:21048. |
[46] | Akyildiz H I, Lo M, Dillon E , et al. Formation of novel photoluminescent hybrid materials by sequential vapor infiltration into polyethylene terephthalate fibers[J]. Journal of Materials Research, 2014,29(23):2817-2826. |
[47] | Brown L V, Davanco M, Sun Z Y , et al. Nanoscale mapping and spectroscopy of nonradiative hyperbolic modes in hexagonal boron nitride nanostructures[J]. Nano Letters, 2018,18(3):1628-1636. |
[48] | Coletta C, Cui Z P, Dazzi A , et al. A pulsed electron beam synjournal of PEDOT conducting polymers by using sulfate radicals as oxidizing species[J]. Radiation Physics and Chemistry, 2016,126:21-31. |
[49] | Cohen Y S, Aurbach D . Surface films phenomena on vanadium-pentoxide cathodes for Li and Li-ion batteries: in situ AFM imaging[J]. Electrochemistry Communications, 2004,6(6):536-542. |
[50] | Swiatowska-Mrowlecka J, Maurice V, Klein L , et al. Nanostructural modifications of V2O5 thin films during Li intercalation studied in situ by AFM[J]. Electrochemistry Communications, 2007,9(9):2448-2455. |
[51] | Vidu R, Quinlan F T, Stroeve P . Use of in situ electrochemical atomic force microscopy (EC-AFM) to monitor cathode surface reaction in organic electrolyte[J]. Industrial & Engineering Chemistry Research, 2002,41(25):6546-6554. |
[52] | Doi T, Inaba M, Tsuchiya H , et al. Electrochemical AFM study of LiMn2O4 thin film electrodes exposed to elevated temperatures[J]. Journal of Power Sources, 2008,180(1):539-545. |
[53] | Ayache M, Jong D, Syzdek J , et al. Near-field IR nanoscale imaging of the solid electrolyte interphase on a HOPG electrode[J]. Journal of The Electrochemical Society, 2015,162(13):A7078-A7082. |
[54] | Ayache M, Lux S F, Kostecki R . IR near-field study of the solid electrolyte interphase on a tin electrode[J]. Journal of Physical Chemistry Letters, 2015,6(7):1126-1129. |
[55] | Verde M G, Baggetto L, Balke N , et al. Elucidating the phase transformation of Li4Ti5O12 lithiation at the nanoscale[J]. ACS Nano, 2016,10(4):4312-4321. |
[56] | Giessibl F J . Advances in atomic force microscopy[J]. Reviews of Modern Physics, 2003,75(3):949-983. |
[57] | Erlandsson R, Olsson L, Martensson P . Inequivalent atoms and imaging mechanisms in ac-mode atomic-force microscopy of Si(111)7x7[J]. Physical Review B, 1996,54(12):R8309-R8312. |
[58] | Chen L W, Yu X C, Wang D . Cantilever dynamics and quality factor control in AC mode AFM height measurements[J]. Ultramicroscopy, 2007,107(4/5):275-280. |
[59] | Chen X, Lai J Q, Shen Y B , et al. Functional scanning force microscopy for energy nanodevices[J]. Advanced Materials, 2018,30(48):1802490. |
[60] | Domke J, Radmacher M . Measuring the elastic properties of thin polymer films with the atomic force microscope[J]. Langmuir, 1998,14(12):3320-3325. |
[61] | Lu W, Zhang J S, Xu J J , et al. In situ visualized cathode electrolyte interphase on LiCoO2 in high voltage cycling[J]. ACS Applied Materials & Interfaces, 2017,9(22):19313-19318. |
[62] | Li L( 李丽), Xu J J( 许晶晶), Han S J( 韩少杰 ), et al. Interfacial property between high-voltage LiNi0.5Mn1.5O4 cathode and electrolyte[J]. Journal of Electrochemistry( 电化学), 2016,22(6):582-589. |
[63] | Zhang J, Wang R, Yang X C , et al. Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy[J]. Nano Letters, 2012,12(4):2153-2157. |
[64] | Zheng J Y, Zheng H, Wang R , et al. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2014,16(26):13229-13238. |
[65] | Zhang J, Yang X C, Wang R , et al. Influences of additives on the formation of a solid electrolyte interphase on MnO electrode studied by atomic force microscopy and force spectroscopy[J]. Journal of Physical Chemistry C, 2014,118(36):20756-20762. |
/
〈 |
|
〉 |