富锂层状正极材料Li2MnO3的表面改性及其电化学性能研究
收稿日期: 2019-05-23
修回日期: 2019-07-08
网络出版日期: 2019-01-16
Electrochemical Performance Improvement of Li2MnO3 Cathode Materials by MgF2 Coating
Received date: 2019-05-23
Revised date: 2019-07-08
Online published: 2019-01-16
Li2MnO3正极材料具有较高的理论容量(459 mAh·g -1),不仅安全无毒还能够大大降低电池的制造成本,从而受到越来越多的关注. 然而,较低的首圈库仑效率和较差的循环性能妨碍了其在锂电池中的实际应用. 在此,作者研究了MgF2涂层对Li2MnO3正极材料的电化学性能. 结果表明,MgF2涂层诱导部分层状Li2MnO3向尖晶石相转化,从而降低了首圈不可逆容量,提高库仑效率. 重量比为0.5%、1.0%和2.0%的MgF2涂层电极的初始库仑效率分别为70.1%、77.5%和84.9%,而原始电极仅为57.7%. 充放电曲线表明,1.0wt.%MgF2涂层改性的Li2MnO3具有最高的充放电容量和最佳的循环稳定性. 40个循环后1.0wt.%MgF2涂层样品的容量保持率为81%,远高于原始样品的容量保持率(53.6%). 电化学阻抗谱结果表明MgF2涂层减少了不利成分的快速沉积,并改善了电极的循环稳定性.
关键词: Li2MnO3正极材料; 氟化镁涂层; 循环稳定性; 库仑效率
王杜丹 , 王非 , 翟欢欢 , 李玉鹏 , 杨纳川 , 陈康华 . 富锂层状正极材料Li2MnO3的表面改性及其电化学性能研究[J]. 电化学, 2020 , 26(2) : 289 -297 . DOI: 10.13208/j.electrochem.190524
Cathode material Li2MnO3 has received more and more attention owing to its high theoretical capacity (459 mAh·g -1). However, the low initial coulombic efficiency and the poor cycle stability hamper its practical application in lithium-ion batteries. Herein, we investigated the crystal structure and electrochemical performance of Li2MnO3 by introducing MgF2 coating layer. The results indicated that the conversion of partial layer Li2MnO3 to spinel phase induced by MgF2 coating could reduce the initial irreversible capacity and improve the first cycle efficiency. The initial coulombic efficiencies of the 0.5wt.%, 1.0wt.%, and 2.0wt.% MgF2-coated electrodes were 70.1%, 77.5% and 84.9%, respectively, compared with 57.7% of the pristine cathode. The charge-discharge curves showed that the 1.0wt.% MgF2-modified Li2MnO3 delivered the highest charge and discharge capacities, and exhibited the best cycle stability. The capacity retention rate of the 1.0wt.% MgF2-coated sample was 81% after the 40th cycles, which was much higher than that of the pristine sample (53.6%). The electrochemical impedance spectroscopic data revealed that the MgF2 coating reduced the rapid deposition of the resistive component and improved the cycle stability of the electrodes.
Key words: Li2MnO3 cathode; MgF2 coating; cycle stability; coulombic efficiency
[1] | Croy J R, Abouimrane A, Zhang Z C , et al. Next-generation lithium-ion Batteries: The promise of near-term advancements[J]. MRS Bulletin, 2014,39(5):407-415. |
[2] | Dunn B, Kamath H, Tarascon J M . Electrical energy storage for the grid: A battery of choices[J]. Science, 2011,334(6058):928-935. |
[3] | Goodenough J B . Electrochemical energy storage in a sustainable modern society[J]. Energy & Environmental Science, 2013,7(1):14-18. |
[4] | Wang J X, Liu Z M, Yan G C , et al. Improving the electrochemical performance of lithium vanadium fluorophosphate cathode material: Focus on interfacial stability[J]. Journal of Power Sources, 2016,329(5):553-557. |
[5] | Amine K, Kanno R, Tzeng Y H . Rechargeable lithium batteries and beyond: progress, challenges, and future directions[J]. MRS Bulletin, 2014,39(5):395-409. |
[6] | Tarascon J M, Armand M . Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001,414(6861):359-367. |
[7] | Sun Y K, Myung S T, Park B C , et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009,8(4):320-324. |
[8] | The control and performance of Li4Mn5O12 and Li2MnO3 phase ratios in the lithium-rich cathode materials[J]. Electrochimica Acta, 2016,190:1142-1149. |
[9] | Yan J H, Liu X B, Li B Y . Recent progress in Li-rich layered oxidesas cathode materials for Li-ion batteries[J]. RSC Advances, 2014,4:63268-63284. |
[10] | Zhong S K, Hu P, Luo X , et al. Preparation of LiNi0.5Mn1.5O4 cathode materials by electrospinning[J]. Ionics, 2016,22(11):2037-2044. |
[11] | Wu L, Lu J J, Wei G , et al. Synjournal and electrochemical properties of xLiMn0.9Fe0.1PO4·yLi3V2(PO4)3/C composite cathode materials for lithium-ion batteries[J]. Electrochimica Acta, 2014,146:288-294. |
[12] | Chen H , IslamMS. Lithium extraction mechanism in Li-rich Li2MnO3 involvin goxygen hole formation and dimer-ization[J]. Chemistry of Materials, 2016,28(18):6656-6663. |
[13] | Matsunaga T, Komatsu H, Shimoda K , et al. Structural un-derstanding of superior battery properties of partially Ni-doped Li2MnO3 ascathode material[J]. The Journal of Physical Chemistry Letters, 2016,7(11):2063-2067. |
[14] | Cho E, Kim K, Jun C , et al. Overview of the oxygen behavior in the degradation of Li2MnO3 cathode material[J]. The Journal of Physical Chemistry C, 2017,121(39):21118-21127. |
[15] | Xiang Y H, Wu X W . Enhanced electrochemical performances of Li2MnO3 cathode materials by Al doping[J]. Ionics, 2018,24(1):83-89 |
[16] | Torres-Castro L, Shojan J, Julien C M , et al. Synjournal, characterization and electrochemical performance of Al-substituted Li2MnO3[J]. Materials Science and Engineering B - Advanced Functional Solid-State Materials, 2015,201:13-22. |
[17] | Matsunaga T, Komatsu H, Shimoda K , et al. Structural understanding of superior battery properties of partially Ni-doped Li2MnO3 as cathode material[J]. Journal of Phy-sical Chemistry Letters, 2016,7(11):2063-2067. |
[18] | Dong X, Xu Y L, Xiong L L , et al. Sodium substitution for partial lithium to significantly enhance the cycling stability of Li2MnO3 cathode material[J]. Journal of Power Sources, 2013,243:78-87. |
[19] | Zhao W, Xiong L L, Xu Y L , et al. Magnesium substitution to improve the electrochemical performance of layered Li2MnO3 positive-electrode material[J]. Journal of Power Sources, 2016,330:37-44. |
[20] | Liu H, Du C Y, Yin G P , et al. An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries[J]. Journal of Materials Chemistry A, 2014,2(37):15640-15646. |
[21] | Sun Y K, Lee M J, Yoon C S , et al. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries[J]. Advanced Materials, 2012,24(9):1192-1196. |
[22] | Myung S T, Izumi K, Komaba S , et al. Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries[J]. Chemistry of Materials, 2005,17(14):3695-3704. |
[23] | Park J H, Yoon S J, Lee H Y , et al. Estimating the burden of psychiatric disorder in korea[J]. Journal of Preventive Medicine and Public Health, 2006,39(1):39-45. |
[24] | Thackeray M M, Kock A D, Rossouw M H , et al. Spinel electrodes from the Li-Mn-O system for rechargeable lithium battery applications[J]. Journal of The Electroche-mical Society, 1992,139(2):363-366. |
[25] | Sun Y K, Jeon Y S, Lee H K . Overcoming Jahn-Teller distortion for spinel Mn phase[J]. Electrochemical and Solid-State Letters, 2000,3(1):7-9. |
[26] | Yan P F, Xiao L, Zheng J M , et al. Probing the degradation mechanism of Li2MnO3 cathode for Li-ion batteries[J]. Chemistry of Materials, 2015,27(3):975-982. |
[27] | Park S H, Myung S T, Oh S W , et al. Ultrasonic spray pyrolysis of nano crystalline spinel LiMn2O4 showing good cycling performance in the 3 V range[J]. Electrochimica Acta, 2006,51(19):4089-4095. |
[28] | Bai Y, Jiang K, Sun S W , et al. Performance improvement of LiCoO2 by MgF2 surface modification and mechanism exploration[J]. Electrochimica Acta, 2014,134:347-354. |
[29] | Yu D Y W, Yanagida K, Kato Y , et al. Electrochemical activities in Li2MnO3[J]. Journal of The Electrochemical Society, 2009,156(6):A417-A424. |
[30] | Croy J R, Kim D, Balasubramanian M , et al. Countering the voltage decay in high capacity xLi2MnO3·(1-x)LiMO2 electrodes (M = Mn, Ni, Co) for Li +-ion batteries [J]. Journal of The Electrochemical Society, 2012,159(6):A781-A790. |
[31] | Wang Q Y, Liu J, Murugan A V , et al. High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability[J]. Journal of Materials Chemistry, 2009,19(28):4965-4972. |
[32] | Liu J, Manthiram A . Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode[J]. Journal of Materials Chemistry, 2010,20(19):3961-3967. |
/
〈 |
|
〉 |